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Abstract 

Choplin’s (2004) model of distribution-density effects (see 
also Choplin & Hummel, 2002) makes the odd prediction that 
in a skewed distribution the smallest and largest values will 
often be judged larger when drawn from a negatively skewed 
distribution than when drawn from a positively skewed 
distribution. This prediction is contrary to empirical findings 
reported in the rather large distribution-density effect 
literature, which has, for the most part, used category ratings 
as the dependent measure. The experiments reported here 
investigated this odd prediction using recall of values from 
memory as the dependent measure. The findings support the 
predictions of Choplin’s model and are not predicted by other 
models of distribution-density effects. 
 

Density Effects 
Evaluations of attribute values such as grades (Wedell, 
Parducci, & Roman, 1989), taste (Riskey, Parducci, & 
Beauchamp, 1979), visual velocity (Sokolov, Pavlova, & 
Ehrenstein, 2000), prices (Niedrich, Sharma, & Wedell, 
2001), income (Hagerty, 2000) and so forth often depend 
upon the density—or frequency—of the distribution from 
which values are drawn (Krumhansl, 1978; Parducci, 1965, 
1995). In particular, evaluation functions are typically 
concave (downward) for positively skewed distributions and 
convex (concave upward) for negatively skewed 
distributions. Values drawn from positively skewed 
distributions are also judged larger than are values drawn 
from negatively skewed distributions when category ratings 
are used as the dependent measure. 

Several explanations for these effects have been proposed. 
Parducci’s (1965) Range-Frequency Theory assumes that 
people are aware of and use percentile rank information to 
evaluate attribute values. Range-Frequency Theory explains 
the finding that evaluation functions are often concave for 
positively skewed distributions, because the density at the 
lower end of positively skewed distributions gives low 
values larger percentile rank scores than they would have 
had otherwise. The slope of the function becomes shallow at 
the sparse upper end of the distribution where percentile 
rank scores increase at a slower rate. The reverse pattern of 
changes in percentile rank scores in negatively skewed 
distributions explains the finding that evaluation functions 
are often convex for negatively skewed distributions. 
Because percentile rank scores remain constant for the 
smallest (percentile rank = 0.0) and largest (percentile rank 
= 1.0) values regardless of the skew of the distribution (as 
do range values), Range-Frequency Theory predicts that 
judgments of the smallest and largest values ought not to be 
affected by the skew of the distribution. 

Haubensak (1992) suggested an alternative explanation 
for density effects on evaluations of sequentially presented 
values. He argued that since people do not know the 

distribution density and range in advance, they tend to 
assume that early values are typical or average and they 
assign them intermediate verbal labels or category ratings. 
After these initial labels or category ratings have been 
assigned, people are obliged to use them consistently. Since 
early values are most likely to come from the dense portion 
of skewed distributions, the portion of the range at the dense 
end of these distributions will be smaller than the portion of 
the range at the sparse end. To cover the entire range of 
values the remaining verbal labels or category ratings would 
have to be assigned asymmetrically. This process of 
assigning category labels to magnitude values almost 
always produces a pattern of evaluation in which values 
(including the smallest and largest values) are judged larger 
when they are drawn from a positively skewed than from a 
negatively skewed distribution. Occasionally, if an early 
value is assigned a high or a low value rather than an 
intermediate value, a high or a low value might be judged 
larger when drawn from a negatively skewed distribution 
than from a positively skewed distribution  (see Haubensak, 
1992, Figure 3 right panel), but both would not be 
(Haubensak, personal correspondence, January 21, 2006). 
 

Comparison-Induced Distortion Theory 
Choplin and Hummel (2002) and  Choplin (2004) proposed 
that their Comparison-Induced Distortion Theory of 
attribute-value evaluation might explain some density 
effects (see also Choplin & Hummel, 2005). Comparison-
Induced Distortion Theory (CID Theory, Choplin, 2004; 
Choplin & Hummel, 2002, 2005) is a theory of attribute-
value evaluation in which verbal magnitude comparisons 
(e.g., “This portion is larger than that portion,” “Hamburger 
A is more fattening than Hamburger B,” and so forth) 
systematically bias how people perceive, conceptualize, 
judge, and recall attribute values. Such magnitude 
comparisons are very common in everyday conversation; 
and verbal magnitude comparisons that people articulate to 
themselves subvocally appear to be ubiquitous (Choplin & 
Hummel, 2005). 

CID Theory starts with the observation that because 
people use verbal comparisons in their daily lives to refer to 
specific quantitative values and differences, verbal 
comparisons become associated with these particular 
quantitative values and differences (Rusiecki, 1985). To 
illustrate the principle that comparisons are associated with 
values and differences, Choplin and Motyka (2006) showed 
a group of pretest participants a portion of “mashed 
potatoes” that was approximately 2.8cm in diameter on a 
photograph of a plate that was approximately 9.0cm in 
diameter as shown in the top of Figure 1. The experimenters 
then asked these participants to imagine and draw a larger 



portion size on an empty plate like the one shown in the 
bottom of Figure 1. The median portion size participants 
drew was approximately 5.2cm in diameter. We will call 
imagined sizes like this 5.2 cm diameter size comparison-
suggested sizes, because they are the sizes that are suggested 
by comparisons. Of importance to the current discussion, 
the difference between the portion size that participants 
viewed and the portion size they drew was approximately 
2.4 cm diameter on average (5.2cm minus 2.8cm). We call 
imagined differences such as this 2.4cm difference 
comparison-suggested differences, because they are the 
differences that are suggested by comparisons. Notice that 
this difference is defined empirically as the mean or median 
of the differences imagined by a control group. While 
Comparison-Induced Distortion Theory relies upon this 
quantitative notion of a comparison-suggested difference, 
this quantity is not a free parameter of the model. It is fixed 
a priori by the responses of a control group. 

 
Figure 1. Stimuli used to measure a comparison-suggested 
difference in portions of “mashed potatoes.” 

 
The basic idea underlying CID Theory is that when 

people’s eyes tell them one thing and the sizes suggested by 
verbal comparisons tell them something different, people 
will combine the two sources of information by taking a 
weighted average of the visual and the comparison-
suggested sizes. For example, if the actual difference 
between two compared portion sizes was only 0.6cm 
diameter (i.e., less than the comparison-suggested difference 
of 2.4cm diameter), then averaging the two sources of 
information would bias judgments of the sizes apart toward 
the 2.4cm diameter comparison-suggested difference. The 
smaller portion would be judged smaller and the larger 
portion would be judged larger than they would have been 
judged otherwise. Likewise, if the actual difference between 
two compared portion sizes were 3.6cm diameter (i.e., more 
than the comparison-suggested difference of 2.4 cm 
diameter), then averaging the two sources of information 
would bias judgments of the sizes together toward the 2.4 
cm diameter comparison-suggested difference. The smaller 
portion would be judged larger and the larger portion size 
would be judged smaller. Note that we use the term 
“judgment” to refer to any measure by which participants 
might assess magnitude values including category or line 

ratings, magnitude estimation, judgments on a correlated 
dimension, or—in the case of the experiments reported 
below—recall of values from memory. 

To demonstrate this principle, Choplin and Motyka 
(2006) asked participants to view two portion sizes. One 
group viewed pictures of two portion sizes (2.7cm and 
3.3cm in diameter), one presented after the other, that 
differed by a small amount (a difference of 0.6 cm 
diameter). A second group viewed two pictures of portion 
sizes (2.7cm and 7.3cm in diameter) that differed by a large 
amount (a difference of 4.6cm diameter). Participants later 
redrew the sizes from memory. The group that had seen the 
sizes that differed by a small amount redrew sizes such that 
the average difference between the diameters of the two 
sizes was 1.6cm, a difference that was reliably larger than 
the actual difference of 0.6cm, t(38)=6.53, p<.05. The group 
that had seen the sizes that differed by a large amount 
redrew sizes such that the average difference between the 
diameters of the two sizes was 3.6cm, a difference that was 
reliably smaller than the actual difference of 4.6cm, 
t(38)=9.33, p<.05. This basic pattern of comparison-induced 
bias was originally reported by Choplin and Hummel (2002) 
and has been replicated in scores of unpublished 
experiments. 
 

Comparisons Might Create Density Effects 
Comparison-induced biases like those just described might 
produce distribution-density effects. To intuitively 
understand how comparisons could create distribution-
density effects, consider the negatively skewed distribution 
presented in Figure 2 (black circles represent presented 
values; gray circles represent comparison-biased values).  
 

 
 from Choplin and Hummel (2002) 

Figure 2: Comparison-induced biases in a negatively 
skewed distribution. 
 

Values in dense regions will be more likely to differ from 
each other by less than a comparison-suggested difference 
than will values in sparse regions. Or if they differ from 
each other by more than a comparison-suggested difference, 
the degree to which these differences exceed the 
comparison-suggested difference will be less than the 
degree to which values in sparse regions exceed this 
difference. Comparisons between values in dense regions 
will, therefore, either be more likely to bias judgments apart 
or be less likely to bias judgments together than will 
comparisons between values in sparse regions. 

By contrast, values in sparse regions will be more likely 
to differ from each other by more than a comparison-
suggested difference than will values in dense regions. Or if 
they differ from each other by less than a comparison-



suggested difference, the degree to which these differences 
subceed the comparison-suggested difference will be less 
than the degree to which values in dense regions subceed 
this difference. Comparisons between values in sparse 
regions will, therefore, either be more likely to bias 
judgments together or be less likely to bias judgments apart 
than will comparisons between values in dense regions. 

The overall effect of these comparison-induced biases 
would be a pattern of evaluation in which values are biased 
away from dense regions and toward sparse regions. Values 
on the boundary between dense and sparse regions, such as 
the second value from the left in Figure 2, would be biased 
toward sparse regions (downward in the case of the 
negatively skewed distribution shown in Figure 2). Values 
at the tail of a skewed distribution (the sparse region) will 
either be more likely to be biased toward the values to 
which they are compared or be less likely to be biased away 
from these values than will values at the head of a skewed 
distribution (the dense region).  

Small values placed at the tail of a negatively skewed 
distribution, for example, would either be more likely to be 
biased upward toward the values to which they would be 
compared or be less likely to be biased downward away 
from these values than they would have been had they been 
placed at the head of a positively skewed distribution. Small 
values should, therefore, be judged (recalled in the 
experiments reported below) larger when placed within a 
negatively skewed distribution than when placed within a 
positively skewed distribution. Likewise, values placed at 
the head of a negatively skewed distribution (i.e., large 
values), would either be more likely to be biased upward 
away from the values to which they would be compared or 
be less likely to be biased downward toward these values 
than they would be had they been placed at the tail of a 
positively skewed distribution. Large values should, 
therefore, also be judged (recalled) larger when placed 
within a negatively skewed distribution than when placed 
within a positively skewed distribution. To see the 
mathematical model and simulations demonstrating how 
this prediction is a necessary consequence of Comparison-
Induced Distortion Theory please refer to Choplin (2004). 

No previous model of distribution-density effects 
(Haubensak, 1992; Krumhansl, 1978; Parducci, 1965, 1995) 
predicts the pattern of biases that is predicted by 
Comparison-Induced Distortion Theory.  In fact, the 
predictions of Comparison-Induced Distortion Theory are 
contrary to virtually all previous empirical findings.  The 
literature on distribution-density effects has consistently 
found that values drawn from positively skewed 
distributions are judged larger than values drawn from 
negatively skewed distributions. However, these empirical 
studies have primarily used category ratings as the 
dependent measure, although they have occasionally also 
used line analog or similarity ratings as the dependent 
measure. Category and line analog ratings might be 
inadequate to test these predictions, because they might be 
rescaled to reflect the range of values (Choplin, 2004; 

Volkmann, 1951). Similarity ratings are also inadequate to 
test these predictions because they involve only pairwise 
judgments.  Choplin and Hummel (2002) argued that recall 
of values from memory might be used to investigate how 
people conceptualize values (see also Huttenlocher, Hedges, 
& Vevea, 2000). 

The goal of the research reported here was to investigate 
whether empirical support for the predictions of 
Comparison-Induced Distortion Theory could be found 
using recall of values from memory as the dependent 
measure. Note that Figure 2 was published in 2002, the 
mathematical model of the theory was published in 2004, 
and the empirical tests of the theory reported here were run 
in the spring of 2005. The experiments reported here, 
therefore, tested a strong a priori prediction of the model.  It 
was a necessary consequence of the model that at the time 
had no empirical support and, in fact, seemed contrary to 
reported empirical findings. 

Note also that in modeling work not reported here, we fit 
the mathematical model of Comparison-Induced Distortion 
Theory to the results presented below. To do so, we 
empirically measured the differences suggested by 
hamburger-calorie comparisons and investigated a number 
of possible comparison strategies that would determine 
which values get compared to which (e.g., all pairwise 
comparisons, random subset of pairwise comparisons, 
comparisons to the most recent values, comparisons to 
similar values, etc.). This modeling work will not be 
reported here, but note that the qualitative predictions 
described above hold regardless of the exact differences 
suggested by hamburger-calorie comparisons or which 
values are compared to which. 
 

Experiment 1 
The purpose of Experiment 1 was to investigate patterns of 
bias in recall of values from memory. Comparison-Induced 
Distortion Theory predicts that recall will be biased away 
from dense regions and towards sparse regions. Therefore, 
the smallest and largest values of a skewed distribution will 
often be recalled larger when placed in a negatively skewed 
distribution than when placed in a positively skewed 
distribution. 
 
Method 
Participants. One hundred people volunteered to 
participate after being approached by the experimenter on 
the DePaul University campus or in the surrounding 
community (50 in the positively skewed condition and 50 in 
the negatively skewed condition). 
 
Materials and Procedure. Participants viewed seven 
hamburgers and their respective caloric values presented in 
either an ascending or a descending order. The hamburgers 
and their associated caloric values were placed within either 
a negatively skewed or a positively skewed distribution as 
shown in Table 1. We were primarily interested in recall of 
three values: the ¼ lb. Burger, ½ lb. Big Double Burger, and 



⅔ lb. Monster Double Burger. To create a positively skewed 
distribution of values, four hamburgers with caloric values 
between the caloric values of the ¼ lb. Burger and the ½ lb. 
Big Double Burger were included in the distribution of 
values. To create a negatively skewed distribution of values, 
four hamburgers with caloric values between the caloric 
values of the ½ lb. Big Double Burger and the ⅔ lb. 
Monster Double Burger were included in the distribution of 
values. To ensure that participants spent some time 
processing the seven values, they were asked whether they 
were surprised by the number of calories in the distribution 
of hamburgers. Participants were then given a distracter task 
followed by a surprise recall task in which they recalled the 
number of calories in each of the seven hamburgers. 
Participants were instructed to estimate values, if they could 
not recall exact values. 
 
Table 1. Presented distributions of calories associated with 
hamburgers. 

Positively Skewed Distribution 
Hamburger Calories 
1/4 lb. Burger 564.0 
1/3 lb. Cheeseburger 599.9 
1/3 lb. Bacon Cheeseburger 635.8 
1/3 lb. Deluxe Burger 671.7 
1/3 lb. Double Burger 707.6 
1/2 lb. Big Double Burger 743.5 
2/3 lb. Monster Double Burger 923.0 

Negatively Skewed Distribution 
Hamburger Calories 
1/4 lb. Burger 564.0 
1/2 lb. Big Double Burger 743.5 
2/3 lb. Big Bacon Double Burger 779.4 
2/3 lb. Big Bacon Double Deluxe Burger 815.3 
2/3 lb. Super Bacon Double Burger 851.2 
2/3 lb. Super Big Bacon 
Double Deluxe Burger 

887.1 

2/3 lb. Monster Double Burger 923.0 
 
Results 
Because we were interested in participants’ recall of the 
distribution of values and not in whether participants could 
correctly associate the number of calories with each 
hamburger, each participant’s list of recalled calories was 
sorted from smallest to largest.  The smallest recalled value 
was associated with the ¼ lb. Burger. The second recalled 
value in the negatively skewed distribution and the sixth 
recalled value in the positively skewed distribution were 
associated with the ½ lb. Big Double Burger. Finally, the 
largest recalled value was associated with the ⅔ lb. Monster 
Double Burger. The results are presented in Table 2. 
Consistent with the predictions of Comparison-Induced 
Distortion Theory and inconsistent with other models of 
distribution-density effects, the smallest and largest values 
were recalled significantly larger when they were placed 
within the negatively skewed distribution than when they 
were placed within the positively skewed distribution. That 

is, participants recalled more calories in the ¼ lb. Burger 
when it was placed in a negatively skewed distribution of 
values (527.9 calories) than when it was placed in a 
positively skewed distribution of values (433.7 calories; 
actual number 564 calories), t(98)=3.44, p < .01. 
Participants also recalled more calories in the ⅔ lb. Monster 
Double Burger when it was placed in a negatively skewed 
distribution of values (974.2 calories) than when it was 
placed in a positively skewed distribution of values (903.4 
calories; actual number 923 calories), t(98)=2.46, p < .05. 
Also as predicted by Comparison-Induced Distortion 
Theory (see Figure 1) and analogous to the predictions of 
other models of distribution-density effects, participants 
recalled more calories in the ½ lb. Big Double Burger when 
it was placed in a positively skewed distribution of values 
(793.4 calories) than when it was placed in a negatively 
skewed distribution of values (637.4 calories; actual number 
743.5 calories), t(98)=6.43, p < .01. This result is 
particularly problematic for Huttenlocher and her 
colleagues’ category adjustment model (Huttenlocher et al., 
2000), as the recalled number of calories was systematically 
biased away from the central tendency of the category. 
 
Table 2. Recalled number of calories in Experiment 1. As 
predicted, recall of the smallest and largest values was 
generally biased away from the tail of the distribution and in 
the direction of the head. The value on the borderline 
between the sparse and the dense regions of the distribution 
was biased away from the dense regions. 
 

 
Hamburger 

Positive 
skew 

Negative 
Skew 

¼ lb. Burger 433.7 527.9 
½ lb. Big Double Burger 793.4 637.4 

⅔ lb. Monster Double Burger 903.4 974.2 
 
Experiment 2 
The results of Experiment 1 supported the predictions of 
Comparison-Induced Distortion Theory. However, the 
sequences in which values were presented might have made 
this pattern of results particularly likely. In particular, 
caloric values were presented simultaneously in either an 
ascending or a descending order in Experiment 1. This 
format might have constrained participants to make 
primarily pairwise comparisons among adjacent values. 
However, the qualitative predictions of Comparison-
Induced Distortion Theory do not depend upon values being 
compared in any particular order (although quantitative 
predictions might differ somewhat, Choplin, 2004; Choplin 
& Hummel, 2005). Rather, Comparison-Induced Distortion 
Theory makes the same qualitative predictions across a 
variety of comparison strategies (strategies that determine 
which values get compared to which). The purpose of 
Experiment 2, therefore, was to investigate whether the 
effects observed in Experiment 1 generalize to random 
sequences of values and to sequential presentation of values. 
Half of the participants viewed hamburgers and their 



associated caloric values presented simultaneously and the 
other half viewed them presented sequentially. 
 
Method 
Participants. Two hundred volunteers participated after 
being approached by the experimenter on the DePaul 
University campus. There were fifty participants in the 
negatively skewed condition and fifty participants in the 
positively skewed condition in each of the simultaneous-
presentation and sequential-presentation conditions.  
 
Materials and Procedure. Fifty random sequences were 
created for each of the positively and negatively skewed 
distributions of values presented in Figure 1. Participants in 
the simultaneous-presentation condition viewed these seven 
values presented in order from top to bottom on the same 
page. Participants in the sequential-presentation condition 
saw the exact same sequences as did the participants in the 
simultaneous-presentation condition, but each of the seven 
values was presented on a separate page. To ensure that 
participants spent some time processing these values, they 
judged whether the numbers of calories in the hamburgers 
were surprising. Participants then completed a distracter 
task and recalled the number of calories in the seven 
hamburgers they had viewed in any order. Participants were 
instructed to estimate, if they could not recall exact values. 
 
Results and Discussion 
Each participant’s list of recalled caloric values was sorted 
from smallest to largest. The smallest recalled value was 
associated with the ¼ lb. Burger. The second recalled value 
in the negatively skewed distribution and the sixth recalled 
value in the positively skewed distribution were associated 
with the ½ lb. Big Double Burger.  Finally, the largest 
recalled value was associated with the ⅔ lb. Monster 
Double Burger. The results are presented in Table 3.  
 
Table 3. Recalled number of calories in Experiment 2. 
Replicating Experiment 1, recall of the smallest and largest 
values was generally biased away from the tail of the 
distribution and in the direction of the head. The value on 
the borderline between the sparse and the dense regions of 
the distribution was biased away from the dense regions. 
 

 
Simultaneous Presentation 

Positive 
skew 

Negative 
skew 

¼ lb. Burger 521.3 576.6 
½ lb. Big Double Burger 778.4 664.9 

⅔ lb. Monster Double Burger 868.6 898.6 
 

Sequential Presentation 
  

¼ lb. Burger 506.3 551.2 
½ lb. Big Double Burger 748.6 664.2 

⅔ lb. Monster Double Burger 876.3 914.8 
 

Consistent with the predictions of Comparison-Induced 
Distortion Theory and inconsistent with other models of 

distribution-density effects, the smallest and largest values 
were recalled significantly larger when they were drawn 
from the negatively skewed distribution than when they 
were drawn from the positively skewed distribution. That is, 
for the ¼ lb. Burger there was a main effect of the type of 
distribution in which it was placed such that participants 
recalled more calories in the ¼ lb. Burger when it was 
placed in a negatively skewed distribution of values (563.9 
calories) than when it was placed in a positively skewed 
distribution of values (513.8 calories; actual number 564 
calories), F(1,196)= 14.66, p < .01. There was no main 
effect of the type of presentation, F(1,196)=2.38, p>.05, nor 
an interaction, F(1,196)= 0.16, p>.05. There was also a main 
effect of the type of distribution in which the ⅔ lb. Monster 
Double Burger was placed such that participants recalled 
more calories when it was placed in a negatively skewed 
distribution of values (906.7 calories) than when it was 
placed in a positively skewed distribution of values (872.45 
calories; actual number 923 calories), F(1,196)= 9.58, 
p<.01.  There was no main effect of the type of presentation, 
F(1,196)= 1.16, p>.05, nor an interaction, F(1,196)= 0.14, 
p>.05.  

Finally, as predicted by Comparison-Induced Distortion 
Theory (see Figure 1) and analogous to the predictions of 
other models of distribution-density effects, participants 
recalled more calories in the ½ lb. Big Double Burger when 
it was placed in a positively skewed distribution (763.5 
calories) than when it was placed in a negatively skewed 
distribution (664.55 calories; actual number 743.5 calories), 
F(1,196)=71.56, p<.01. This result is particularly 
problematic for Huttenlocher and her colleagues’ category 
adjustment model (Huttenlocher et al., 2000), as the recalled 
number of calories was systematically biased away from the 
central tendency of the category. Again, there was no main 
effect of the type of presentation, F(1,196)=1.70, p>.05, nor 
an interaction, F(1,196)=1.54, p>.05. 
 

General Discussion 
Comparison-Induced Distortion Theory (Choplin, 2004; 

Choplin & Hummel, 2002, 2005) makes the unique 
prediction among theories of distribution-density effects that 
the smallest and largest values in a skewed distribution 
should often be judged larger when drawn from a negatively 
skewed distribution than when drawn from a positively 
skewed distribution.  Two experiments found evidence for 
such a pattern using recall of values from memory as the 
dependent measure. In Experiment 1, hamburgers and their 
associated caloric values were presented simultaneously in 
either an ascending or a descending order.  In Experiment 2, 
hamburgers and their associated caloric values were 
presented in random orders wherein the seven hamburgers 
were presented either simultaneously on the same page or 
sequentially on seven separate pages. The results supported 
the predictions of Comparison-Induced Distortion Theory 
across all orders and types of presentation. 

Category ratings are often used to measure people’s 
evaluations of magnitude.  The dissociation between the 



effects of distribution density on category ratings and the 
effects of distribution density on recall of values from 
memory raises the concern that researchers might be relying 
too heavily upon category ratings to measure human 
magnitude evaluation. Category ratings might be 
particularly susceptible to biases such as primacy effects 
(Haubensak, 1992) and rescaling to reflect the psychological 
range of values (Volkmann, 1951), which might vary even 
if the presented range is held constant (Choplin, 2004). 

We do not think that recall of values from memory is 
necessarily a better measure of magnitude evaluation than 
category ratings. Recall of values from memory is 
susceptible to its own biases. Rather, we think that 
researchers should try to measure human magnitude 
evaluation by seeking converging evidence across a variety 
of dependent measures. Each measure will undoubtedly 
have its own biases, but together these measures will 
provide a more thorough, multifaceted picture of human 
magnitude evaluation. 
   

Conclusions 
The experiments reported here suggest that some density 
effects are likely created by verbal comparison-induced 
biases. Verbal comparisons between values in dense regions 
will tend to bias values away from each other (or, at least, 
will be less likely to bias values toward each other). Verbal 
comparisons between values in sparse regions will tend to 
bias values toward each other (or, at least, will be less likely 
to bias values away from each other). These biases produce 
distribution-density effects. 
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