CORRECTION TO: STRUCTURE OF ATTRACTORS FOR BOUNDARY MAPS ASSOCIATED TO FUCHSIAN GROUPS

SVETLANA KATOK AND ILIE UGARCOVICI

Correction to: Geom Dedicata (2017) 191:171–198 https://doi.org/10.1007/s10711-017-0251-z

The paper [2] studies the dynamics of a class of circle maps and their two-dimensional natural extensions built using the generators of a given cocompact and torsion-free Fuchsian group Γ . If \mathbb{D} denotes the Poincaré unit disk model endowed with the standard hyperbolic metric, then $\Gamma \setminus \mathbb{D}$ is a compact surface of constant negative curvature and of a certain genus g > 1. Most of the considerations and proofs in the paper were done for a special case of surface groups, those that admit a fundamental domain \mathcal{F} given by a regular (8g - 4)-sided polygon. On p. 172 in the Introduction, we neglected to explain in the paragraph below equation (1.2) that, although not all surface groups admit such a fundamental domain, it is possible to reduce the general case to this special situation without affecting the results of the paper (see also [1, Appendix A]).

More precisely, given $\Gamma' \setminus \mathbb{D}$ a compact surface of genus g > 1, there exists a Fuchsian group Γ such that:

- (i) $\Gamma \setminus \mathbb{D}$ is a compact surface of the same genus g;
- (ii) Γ has a fundamental domain \mathcal{F} given by a regular (8g 4)-sided polygon;
- (iii) By the Fenchel-Nielsen theorem [3] there exists an orientation preserving homeomorphism h from $\overline{\mathbb{D}}$ onto $\overline{\mathbb{D}}$ such that $\Gamma' = h \circ \Gamma \circ h^{-1}$.

One can now extend the considerations described in the introductory section of the paper to any compact surface $\Gamma' \setminus \mathbb{D}$, using the orientation preserving homeomorphism h and the setting for $\Gamma \setminus \mathbb{D}$. Let

$$T'_{i} = h \circ T_{i} \circ h^{-1}, P'_{i} = h(P_{i}) \text{ and } Q'_{i} = h(Q_{i}).$$

Then the set $\{T'_i\}$ satisfies relations (1.3)–(1.5) and the order of the points $\{P'_i\} \cup \{Q'_i\}$ will be the same as for the set $\{P_i\} \cup \{Q_i\}$. The geodesics $P'_iQ'_{i+1}$ will produce the (8g - 4)-sided polygon \mathcal{F}' whose sides are identified by transformations T'_i . Adler and Flatto [1, Appendix A] conclude that region \mathcal{F}' satisfies all the conditions of Poincaré's theorem, hence it is the fundamental domain for Γ' .

The main object of study in our paper is the generalized Bowen-Series circle map $f_A: S \to S$ given by (1.8)

$$f_{\bar{A}}(x) = T_i(x)$$
 if $A_i \le x < A_{i+1}$,

with the set of jump points $\overline{A} = \{A_1, A_2, \dots, A_{8g-4}\}$ satisfying the condition that $A_i \in (P_i, Q_i), 1 \le i \le 8g-4$. The corresponding two-dimensional extension map given

Date: December 4, 2017.

²⁰¹⁰ Mathematics Subject Classification. 37D40.

Key words and phrases. Fuchsian groups, reduction theory, boundary maps, attractor.

The second author is partially supported by a Simons Foundation Collaboration Grant.

by (1.9) is

$$F_{\bar{A}}(x,y) = (T_i(x), T_i(y)) \text{ if } A_i \le y < A_{i+1}.$$

Even though the main results of the paper (Theorems 1.2 and 1.3) were proved for the special situation of a genus g compact surface $\Gamma \setminus \mathbb{D}$ that admits a regular (8g - 4)sided fundamental region, the results remain true in full generality for an arbitrary genus g compact surface $\Gamma' \setminus \mathbb{D}$ with the set of (8g - 4) generators $\{T'_i\}$, the set of jump points $\bar{A}' = \{A'_1, A'_2, \ldots, A'_{8g-4}\}$ with $A'_i = h(A_i) \in (P'_i, Q'_i)$ and the corresponding maps:

$$f_{\bar{A}'}(x) = T'_i(x) \quad \text{if } A'_i \le x < A'_{i+1}; \quad F_{\bar{A}'}(x,y) = (T'_i(x),T'_i(y)) \quad \text{if } A'_i \le y < A'_{i+1}$$

The orientation preserving homeomorphism $h: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ and the relations

$$f_{\bar{A}'} = h \circ f_{\bar{A}}$$
 and $F_{\bar{A}'} = (h \times h) \circ F_{\bar{A}}$

allow us to conclude that:

(a) A partition point $A'_i \in (P'_i, Q'_i)$, $1 \le i \le 8g-4$, satisfies the cycle property, i.e., there exist positive integers m_i, k_i such that

$$f_{\bar{A}'}^{m_i}(T'_iA'_i) = f_{\bar{A}'}^{k_i}(T'_{i-1}A'_i)$$

if and only if the corresponding partition point $A_i = h^{-1}(A'_i) \in (P_i, Q_i)$ satisfies the cycle property

$$f_{\bar{A}}^{m_i}(T_i A_i) = f_{\bar{A}}^{k_i}(T_{i-1} A_i).$$

(b) A partition point A'_i satisfies the short cycle property

$$f_{\bar{A}'}(T'_iA'_i) = f_{\bar{A}'}(T'_{i-1}A'_i)$$

if and only if the corresponding partition point $A_i = h^{-1}(A'_i)$ satisfies the short cycle property:

$$f_{\bar{A}}(T_iA_i) = f_{\bar{A}}(T_{i-1}A_i).$$

(c) If $\Omega_{\bar{A}} = \bigcap_{n=0}^{\infty} F_{\bar{A}}^n(\mathbb{S} \times \mathbb{S} \setminus \Delta)$ is the global attractor of the map $F_{\bar{A}}$, then $\Omega_{\bar{A}'} = (I - I) \cdot (I - I) \cdot$

 $(h \times h)(\Omega_{\bar{A}})$ is the global attractor of the map $F_{\bar{A}'}$. Also, if $\Omega_{\bar{A}}$ has finite rectangular structure, then $\Omega_{\bar{A}'}$ has finite rectangular structure, since $h \times h$ preserves horizontal and vertical lines.

We would like to use this opportunity to also correct some misprints: on p. 173, last paragraph, the text "of the fundamental domain \mathcal{F} " should read "of \mathbb{D} "; on p. 193, in the equation (7.2), the term " $A_i + 1$ " should read " A_{i+1} "; on p. 193, Proposition 7.1, the relations " $B_i = T_i A_i$, and $C_i = T_{i-1} A_i$ " should read " $B_i = T_{\sigma(i-1)} A_{\sigma(i-1)}$, and $C_i = T_{\sigma(i+1)} A_{\sigma(i+1)+1}$."

References

- R. Adler, L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25 (1991), no. 2, 229–334.
- [2] S. Katok, I. Ugarcovici, Structure of attractors for boundary maps associated to Fuchsian groups, Geom. Dedicata 191, 171–198, (2017). 171DOI 10.1007/s10711-017-0251-z.
- [3] P. Tukia, On discrete groups of the unit disk and their isomorphisms, Ann. Acad. Sci. Fenn., Series A, I. Math. 504 (1972), 5–44.

Department of Mathematics, The Pennsylvania State University, University Park, PA16802

 $E\text{-}mail\ address:\ \mathtt{sxk37@psu.edu}$

Department of Mathematical Sciences, DePaul University, Chicago, IL 60614 E-mail address: iugarcov@depaul.edu