Chapter 3

Describing Syntax and Semantics
Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars
• Describing the Meanings of Programs: Dynamic Semantics
Introduction

• **Syntax**: the form or structure of the expressions, statements, and program units
• **Semantics**: the meaning of the expressions, statements, and program units
• Syntax and semantics provide a language’s definition
 – Users of a language definition
 • Other language designers
 • Implementers
 • Programmers (the users of the language)
The General Problem of Describing Syntax: Terminology

- A **sentence** is a string of characters over some alphabet
- A **language** is a set of sentences
- A **lexeme** is the lowest level syntactic unit of a language (e.g., *, sum, begin)
- A **token** is a category of lexemes (e.g., identifier)
Formal Definition of Languages

• **Recognizers**
 – A recognition device reads input strings of the language and decides whether the input strings belong to the language
 – Example: syntax analysis part of a compiler
 – Detailed discussion in Chapter 4

• **Generators**
 – A device that generates sentences of a language
 – One can determine if the syntax of a particular sentence is correct by comparing it to the structure of the generator
Formal Methods of Describing Syntax

• Backus–Naur Form and Context–Free Grammars
 – Most widely known method for describing programming language syntax
• Extended BNF
 – Improves readability and writability of BNF
• Grammars and Recognizers
BNF and Context-Free Grammars

• Context-Free Grammars
 – Developed by Noam Chomsky in the mid-1950s
 – Language generators, meant to describe the syntax of natural languages
 – Define a class of languages called context-free languages
Backus–Naur Form (BNF)

• Backus–Naur Form (1959)
 – Invented by John Backus to describe Algol 58
 – BNF is equivalent to context–free grammars
 – BNF is a metalinguage used to describe another language
 – In BNF, abstractions are used to represent classes of syntactic structures—–they act like syntactic variables (also called nonterminal symbols)
BNF Fundamentals

- Non-terminals: BNF abstractions
- Terminals: lexemes and tokens
- Grammar: a collection of rules
 - Examples of BNF rules:
 - `<ident_list> → identifier | identifier, <ident_list>`
 - `<if_stmt> → if <logic_expr> then <stmt>`
 - `<number> → <digit> | <number> <digit>`
 - `<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9`
BNF Rules

• A rule has a left-hand side (LHS) and a right-hand side (RHS), and consists of terminal and nonterminal symbols

• A grammar is a finite nonempty set of rules

• An abstraction (or nonterminal symbol) can have more than one RHS

\[
\langle \text{stmt} \rangle \rightarrow \langle \text{single_stmt} \rangle \\
| \text{begin } \langle \text{stmt_list} \rangle \text{ end}
\]
Describing Lists

- Syntactic lists are described using recursion

 \[<\text{ident_list}> \rightarrow \text{ident} \]

 \[\rightarrow \text{ident, } <\text{ident_list}> \]

- A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence (all terminal symbols)
An Example Grammar

<program> → <stmts>
<stmts> → <stmt> | <stmt> ; <stmts>
<stmt> → <var> = <expr>
<var> → a | b | c | d
<expr> → <term> + <term> | <term> - <term>
<term> → <var> | const
An Example Derivation

\(<\text{program}\> \Rightarrow \ <\text{stmts}\> \Rightarrow \ <\text{stmt}\>

\Rightarrow \ <\text{var}\> = \ <\text{expr}\> \Rightarrow \ a = \ <\text{expr}\>

\Rightarrow \ a = \ <\text{term}\> + \ <\text{term}\>

\Rightarrow \ a = \ <\text{var}\> + \ <\text{term}\>

\Rightarrow \ a = \ b + \ <\text{term}\>

\Rightarrow \ a = \ b + \ \text{const}\)
Derivation

• Every string of symbols in the derivation is a sentential form
• A sentence is a sentential form that has only terminal symbols
• A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded
• A derivation may be neither leftmost nor rightmost
Parse Tree

- A hierarchical representation of a derivation

```
<program>
  <stmts>
    <stmt>
      const a = <expr>
      <var> = <term> + <term>
      <var> = b
```

```
Ambiguity in Grammars

- A grammar is *ambiguous* if and only if it generates a sentential form that has two or more distinct parse trees.
An Ambiguous Expression Grammar

\[
<\text{expr}> \rightarrow <\text{expr}> \ <\text{op}> \ <\text{expr}> \mid \text{const}
\]

\[
<\text{op}> \rightarrow / \mid -
\]
An Unambiguous Expression Grammar

- If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

\[
<\text{expr}> \rightarrow <\text{expr}> - <\text{term}> \mid <\text{term}>
\]
\[
<\text{term}> \rightarrow <\text{term}> / \text{const} \mid \text{const}
\]
dangling else

- An example in programming languages is the "dangling else"
  
  if A then if B then C else D

  Is this
  
  if A then (if B then C else D)
  
  or
  
  if A then (if B then C) else D

  ?

  Sometimes it is possible to rewrite the grammar productions to eliminate ambiguity
if–then–else

The meaning of the if–then–else statement is the same in Pascal and Modula–2, but the syntax differs.

Pascal:
   if <boolean expression> then <statement> else <statement>

Modula–2:
   IF <boolean expression> THEN <statement sequence> ELSE
      <statement sequence> END
Associativity of Operators

• Operator associativity can also be indicated by a grammar

\[
<\text{expr}> \rightarrow <\text{expr}> + <\text{expr}> \mid \text{const} \quad \text{(ambiguous)} \\
<\text{expr}> \rightarrow <\text{expr}> + \text{const} \mid \text{const} \quad \text{(unambiguous)}
\]
Extended BNF

• Optional parts are placed in brackets [ ]
  \[\text{proc\_call} \rightarrow \text{ident} \ [(\text{expr\_list})]\]

• Alternative parts of RHSs are placed inside parentheses and separated via vertical bars
  \[\text{term} \rightarrow \text{term} (+|-) \text{const}\]

• Repetitions (0 or more) are placed inside braces { }
  \[\text{ident} \rightarrow \text{letter} \ \{\text{letter|digit}\}\]
BNF and EBNF

• BNF

\[
\begin{align*}
<\text{expr}> & \rightarrow <\text{expr}> + <\text{term}> \\
& \quad | <\text{expr}> - <\text{term}> \\
& \quad | <\text{term}> \\
<\text{term}> & \rightarrow <\text{term}> \ast <\text{factor}> \\
& \quad | <\text{term}> / <\text{factor}> \\
& \quad | <\text{factor}>
\end{align*}
\]

• EBNF

\[
\begin{align*}
<\text{expr}> & \rightarrow <\text{term}> \{(+ \mid -) <\text{term}>\} \\
<\text{term}> & \rightarrow <\text{factor}> \{(* \mid /) <\text{factor}>\}
\end{align*}
\]
BNF vs EBNF

Extended BNF (EBNF) is a more convenient way of describing CFGs than is BNF.

EBNF is *no more powerful* than BNF: the languages described are still the CFLs, and any EBNF grammar can be transformed into BNF.
EBNF: Grouping

Grouping can be eliminated by introducing a new Non-terminal for each group:

\[ A \rightarrow \ldots (\alpha_1) \ldots (\alpha_k) \ldots \]

is equivalent to

\[ A \rightarrow \ldots A_1 \ldots \ldots A_k \ldots \]

\[ A_1 \rightarrow \alpha_1 \]

\[ \ldots \]

\[ \ldots \]

\[ A_k \rightarrow \alpha_k \]
EBNF: Grouping of Alternatives

- Alternatives in a group does not add anything new:
  - $A \rightarrow B (C \mid D \mid E) F$
  - is by elimination of grouping equivalent to
  - $A \rightarrow BA_1 F$
  - $A_1 \rightarrow C \mid D \mid E$
  - which in turn is just a shorter way of writing
  - $A \rightarrow BA_1 F$
  - $A_1 \rightarrow C$
  - $A_1 \rightarrow D$
  - $A_1 \rightarrow E$
The iterative construct can be replaced by explicit recursion:

\[ A \rightarrow \ldots \{ B \} \ldots \]

is equivalent to (left recursion)

\[ A \rightarrow \ldots A_1 \ldots \]

\[ A_1 \rightarrow \epsilon \mid A_1 B \]

or (right recursion)

\[ A \rightarrow \ldots A_1 \ldots \]

\[ A_1 \rightarrow \epsilon \mid B A_1 \]
The grammar $G$ with the single production

$$S \rightarrow a\{bb\}c$$

generates the language

$L(G) = \{ a(bb)^i c \mid i \geq 0 \}$

$= \{ ac; abbc, abbbbc, abbbbbbbc, \ldots \}$

An equivalent left-recursive grammar is

$$S \rightarrow aAc$$
$$A \rightarrow \epsilon \mid Abb$$
Substitution

If we use EBNF, we can substitute the RHS of a production for uses of the non-terminal it defines, as long as all alternatives are included:

\[
\begin{align*}
A & \rightarrow X \ B \ Y \\
B & \rightarrow C \mid D \\
B & \rightarrow E
\end{align*}
\]

can be transformed into

\[
\begin{align*}
A & \rightarrow X \ (C \mid D \mid E) \ Y \\
B & \rightarrow C \mid D \\
B & \rightarrow E
\end{align*}
\]
Left Factoring (1)

If we use EBNF, a common prefix among a group of productions can be factored out. Consider:

\[ A \rightarrow XY X \mid XY ZZY \]

After left factoring:

\[ A \rightarrow XY (X \mid ZZY) \]
Left Factoring (2)

Example:
\[ \text{single-cmd} \rightarrow \text{v-name} := \text{expression} \]
\[ | \text{if expression then single-cmd} \]
\[ | \text{if expression then single-cmd} \]
\[ \text{else single-cmd} \]

After left factoring:
\[ \text{single-cmd} \rightarrow \text{v-name} := \text{expression} \]
\[ | \text{if expression then single-cmd} \]
\[ (\varepsilon | \text{else single-cmd}) \]
Elimination of Left Recursion (1)

• Certain kinds of parsers cannot handle *left-recursive* productions.
• If it is desired to use such a parser, but the grammar is left-recursive, then the grammar first has to be transformed into an equivalent grammar that is *not* left-recursive.
• We will first see how that can be done for *immediate* left recursion; i.e., productions of the form
  \[ A \rightarrow A \alpha \]  (where \( \alpha \) is not \( \epsilon \)).
Elimination of Left Recursion (2)

For each non-terminal A defined by some left-recursive production, group the productions for A

\[ A \rightarrow A \alpha_1 \mid A \alpha_2 \mid \ldots \mid A \alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \]

such that no \( \beta_i \) begins with an A.

Then replace the A productions by

\[ A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \ldots \mid \beta_n A' \mid \epsilon \]
\[ A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_m A' \mid \]

Assumption: no \( \alpha_i \) is
Consider the (immediately) left-recursive grammar:

\[
\begin{align*}
  S & \rightarrow A \mid B \\
  A & \rightarrow ABc \mid \text{Add} \mid a \mid aa \\
  B & \rightarrow \text{Bee} \mid b
\end{align*}
\]

Terminal strings derivable from B include:
- b, bee, beeee, beeeeeee

Terminal strings derivable from A include:
- a, aa, add, aadd, addddd, aaddddd, abc, aabc, abeec, aabeec, abeecbeec, aabeeeeecddbbeec
Elimination of Left Recursion (4)

Let us do a leftmost derivation of 
aabeeeeeecddbeec:
S -> A
  -> ABc
  -> AddBc
  -> ABcddBc
  -> aaBcddBc
  -> aaBeecddBc
  -> aaBeeeeeecddBc
  -> aabeeeecddBc
  -> aabeeeecddBeec
  -> aabeeeecddbeec
Elimination of Left Recursion (5)

Here is the grammar again:

\[
S \rightarrow A \mid B
\]
\[
A \rightarrow ABc \mid Add \mid a \mid aa
\]
\[
B \rightarrow Bee \mid b
\]

An equivalent right-recursive grammar:

\[
S \rightarrow A \mid B
\]
\[
A \rightarrow aA' \mid aaA'
\]
\[
A' \rightarrow BcA' \mid ddA' \mid \epsilon
\]
\[
B \rightarrow bB'
\]
\[
B' \rightarrow eeB' \mid \epsilon
\]
Elimination of Left Recursion (6)

Derivation of aabeeeecddbeec in the new grammar:

\[ S \rightarrow A \rightarrow aaA' \rightarrow aaBcA' \]
\[ \rightarrow aabB'cA' \]
\[ \rightarrow aabeeB'cA' \]
\[ \rightarrow aabeeeB'cA' \]
\[ \rightarrow aabeeeecA' \]
\[ \rightarrow aabeeeecddA' \]
\[ \rightarrow aabeeeecddBcA' \]
\[ \rightarrow aabeeeecddBcB'cA' \]
\[ \rightarrow aabeeeecddbeeeB'cA' \]
\[ \rightarrow aabeeeecddbeecA' \]
\[ \rightarrow aabeeeecddbeec \]
Elimination of Left Recursion (7)

To eliminate *general* left recursion:
- first transform the grammar into an *Immediately* left-recursive grammar through
- systematic substitution then proceed as before.
Elimination of Left Recursion (8)

For example, the generally left-recursive grammar

\[
\begin{align*}
A & \rightarrow Ba \\
B & \rightarrow Ab \mid Ac \mid \epsilon
\end{align*}
\]

is first transformed into the immediately left-recursive grammar

\[
\begin{align*}
A & \rightarrow Aba \\
A & \rightarrow Aca \\
A & \rightarrow a
\end{align*}
\]
Elimination of Left Rec. example

Identifier → Letter
    | Identifier Letter
    | Identifier Digit

Left factoring yields:
Identifier → Letter
    | Identifier ( Letter | Digit )

The recursion can now be eliminated by using the iterative EBNF construct:
Identifier → Letter { Letter | Digit }
Attribute Grammars

- Context-free grammars (CFGs) cannot describe all of the syntax of programming languages
- Additions to CFGs to carry some semantic info along parse trees
- Primary value of attribute grammars (AGs)
  - Static semantics specification
  - Compiler design (static semantics checking)
Attribute Grammars: Definition

- An attribute grammar is a context-free grammar $G = (S, N, T, P)$ with the following additions:
  - For each grammar symbol $x$ there is a set $A(x)$ of attribute values
  - Each rule has a set of functions that define certain attributes of the nonterminals in the rule
  - Each rule has a (possibly empty) set of predicates to check for attribute consistency
Attribute Grammars: Definition

• Let $X_0 \rightarrow X_1 \ldots X_n$ be a rule
• Functions of the form $S(X_0) = f(A(X_1), \ldots, A(X_n))$ define synthesized attributes
• Functions of the form $I(X_j) = f(A(X_0), \ldots, A(X_n))$, for $i \leq j \leq n$, define inherited attributes
• Initially, there are intrinsic attributes on the leaves
Attribute Grammars: An Example

• Syntax

\[
\begin{align*}
\langle \text{assign} \rangle & \rightarrow \langle \text{var} \rangle = \langle \text{expr} \rangle \\
\langle \text{expr} \rangle & \rightarrow \langle \text{var} \rangle + \langle \text{var} \rangle \mid \langle \text{var} \rangle \\
\langle \text{var} \rangle & \rightarrow A \mid B \mid C
\end{align*}
\]

• actual_type: synthesized for \langle \text{var} \rangle and \langle \text{expr} \rangle

• expected_type: inherited for \langle \text{expr} \rangle
Attribute Grammar (continued)

- **Syntax rule**: \(<expr> \rightarrow <var>[1] + <var>[2]\)**
  
  **Semantic rules:**
  
  \(<expr>.actual_type \leftarrow <var>[1].actual_type\)
  
  **Predicate:**
  
  \(<var>[1].actual_type == <var>[2].actual_type\)
  
  \(<expr>.expected_type == <expr>.actual_type\)

- **Syntax rule**: \(<var> \rightarrow \text{id}\)**
  
  **Semantic rule:**
  
  \(<var>.actual_type \leftarrow \text{lookup (<var>.string)}\)
Attribute Grammars (continued)

• How are attribute values computed?
  - If all attributes were inherited, the tree could be decorated in top–down order.
  - If all attributes were synthesized, the tree could be decorated in bottom–up order.
  - In many cases, both kinds of attributes are used, and it is some combination of top–down and bottom–up that must be used.
Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)
<var>[2].actual_type ← lookup (B)
<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type
Semantics

• There is no single widely acceptable notation or formalism for describing semantics

• Operational Semantics
  – Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement
Operational Semantics

- To use operational semantics for a high-level language, a virtual machine is needed.
- A *hardware* pure interpreter would be too expensive.
- A *software* pure interpreter also has problems:
  - The detailed characteristics of the particular computer would make actions difficult to understand.
  - Such a semantic definition would be machine-dependent.
Operational Semantics (continued)

• A better alternative: A complete computer simulation

• The process:
  – Build a translator (translates source code to the machine code of an idealized computer)
  – Build a simulator for the idealized computer

• Evaluation of operational semantics:
  – Good if used informally (language manuals, etc.)
  – Extremely complex if used formally (e.g., VDL), it was used for describing semantics of PL/I.
Axiomatic Semantics

- Based on formal logic (predicate calculus)
- Original purpose: formal program verification
- Axioms or inference rules are defined for each statement type in the language (to allow transformations of expressions to other expressions)
- The expressions are called *assertions*
Axiomatic Semantics (continued)

- An assertion before a statement (a \textit{precondition}) states the relationships and constraints among variables that are true at that point in execution
- An assertion following a statement is a \textit{postcondition}
- A \textit{weakest precondition} is the least restrictive precondition that will guarantee the postcondition
Axiomatic Semantics Form

- **Pre-, post form:** \( \{P\} \text{ statement } \{Q\} \)

- **An example**
  - \( a = b + 1 \) \( \{a > 1\} \)
  - **One possible precondition:** \( \{b > 10\} \)
  - **Weakest precondition:** \( \{b > 0\} \)
Program Proof Process

- The postcondition for the entire program is the desired result
  - Work back through the program to the first statement. If the precondition on the first statement is the same as the program specification, the program is correct.
Axiomatic Semantics: Axioms

• An axiom for assignment statements
  \((x = E): \{Q_{x\rightarrow E}\} x = E \{Q\}\)

• The Rule of Consequence:
  \[
  \begin{align*}
  \{P\} S\{Q\}, P' & \Rightarrow P, Q \Rightarrow Q' \\
  \{P'\} S\{Q'\}
  \end{align*}
  \]
Axiomatic Semantics: Axioms

• An inference rule for sequences

\{P_1\} S_1 \{P_2\}
\{P_2\} S_2 \{P_3\}

\[
\frac{\{P_1\} S_1 \{P_2\}, \{P_2\} S_2 \{P_3\}}{\{P_1\} S_1; S_2 \{P_3\}}
\]
Axiomatic Semantics: Axioms

• An inference rule for logical pretest loops

\[ \{P\} \text{while } B \text{ do } S \text{ end } \{Q\} \]

\[ \frac{(I \text{ and } B) \ S \ \{I\}}{\{I\} \text{ while } B \text{ do } S \ \{I \text{ and } (\text{not } B)\}} \]

where \( I \) is the loop invariant (the inductive hypothesis)
Axiomatic Semantics: Axioms

- Characteristics of the loop invariant: I must meet the following conditions:
  - \( P \Rightarrow I \) -- the loop invariant must be true initially
  - \( \{I\} B \{I\} \) -- evaluation of the Boolean must not change the validity of I
  - \( \{I \text{ and } B\} S \{I\} \) -- I is not changed by executing the body of the loop
  - \( (I \text{ and } (\text{not } B)) \Rightarrow Q \) -- if I is true and B is false, is implied
  - The loop terminates
Summary

- BNF and context–free grammars are equivalent meta–languages
  - Well–suited for describing the syntax of programming languages
- An attribute grammar is a descriptive formalism that can describe both the syntax and the semantics of a language
- Three primary methods of semantics description
  - Operation, axiomatic, denotational