Network Programming
TDC 561
Lecture # 9: Reliable Multicast Protocols

Dr. Ehab S. Al-Shaer
School of Computer Science & Telecommunications
DePaul University
Chicago, IL

Agenda
- Midterm Exam (review), Demo Sched.
- Reliable Multicasting
 - concept and examples
 - RMP 1.3 b: operation and example
 - Advanced application (HiFi)
 - Independent studies
- Techniques for Network Programming
- Deadlock and Starvation in Network Prog.

Reliable Transport Multicast Protocols
- What is “Reliable”?
 - Loss Recovery (for all members?)
 - ordered Delivery
 - No Duplicates
 - Isolating Independent failures
- What is “Transport”?
 - ISO and Internet Transport layers
 - No Network layer support is expected
 - End-to-end Reliability
- Which “Multicast”?
 - IP Multicast proposed in RFC 1112
TRMP: Token-ring Multicast Protocols

Basic Concept
- Token site is responsible for ACK
- Ack (timestamp) is multicasted for total ordering
- Next token-site must have all previous packets
- Avoid Ack-implosion: only token-site Ack
- Avoid Nack-implosion: Receivers send NACK to the token-site
- Bounded Buffering: memory release after a message gets “stable” (token cycles)

Avoid Nack-implosion: Receivers send NACK to the token-site

Bounded Buffering: memory release after a message gets “stable” (token cycles)

Retransmission
- Unicast (Nack-response-avoidance)
- Advantages of Token-Ring:
 - Message stability (all receivers got it)
 - Immediate delivery (QoS=just reliable)
 - Delayed delivery (QoS=total ordering)
 - Limit the buffering requirements
 - Distribute the retransmission overhead
 - Crash recovery (resiliency)
- Examples: Reliable Multicast Protocol (RMP)

RMP Error control Mechanism (Cont.)

NACK Mechanism in RMP 1.0
- Unicast NACK to token-site (NO implosion avoidance)
- Unicast NACK response: takes O(Receivers)

NACK Mechanism in RMP 1.3b
- SRM request/repair NACK randomization
- Implosion avoidance (NACK, reply)
- Token-site ACK instead of “periodic polling”
RMP 1.3b Flow Control
Mechanism
- TCP-like Flow Control!
 - Round-trip-time variance estimation
 - slow start
 - Dynamic window sizing on congestion
 - exponential retransmission timer backoff
- Sender and Token-site Flow Control only
- Any NACK Reduces the Sender Window too!!

Examples of Reliable Multicast Protocols
- SRM: Scalable Reliable Multicast (UCB)
- RMP: Reliable Multicast Protocol (UWV)
- TMTP: Tree-based Multicast Transport Protocol (UK)
- SCE: Single Connection Emulation (GaTech)
- RMTP: Reliable Multicast Transport Protocol (AT&T)
- Horus: Cornell university/Ken Birman
- Log-based Multicast Protocol (Stanford)
- LORAX: UCSC
- MTP-2: Multicast Transport Protocol (RFC1301)
- RAMP: Reliable Adaptive Multicast Protocol (RFC1458)

Application-layer Reliable Multicast Server
- RMS Extended Group Communication Services
 - Group Communication Fault Recovery
 - Inter-Protocol Multicast Communication
 - Extended Protocol Services
 - Selective Re-transmission
 - Dynamic Group Masking
 - Simple Declarative API
 - Extended Group Management Service