
COMMUNICATIONS OF THE ACM June 2007/Vol. 50, No. 6 21

In my March column, I
described four projects I
encountered at a company

where management had signed
up for what appeared to be only
a 20% probability of completion
within the committed schedule.
Well, actually, management had-
n’t signed for such a low proba-
bility at all, because they really
didn’t know what the probability
might be.

This is not unusual.
Software projects are
routinely committed
at uncertain levels of
probability in all
kinds of compa-
nies. Sometimes
even the con-
cept of proba-
bility applied

to software development receives a
blank stare.

DISORGANIZED CRIME

I first encountered this in the
early 1980s when, as a project
manager, I presented an estimate
to my boss. To say this gentle-
man was a tough manager was
an understatement: he would not
tolerate any thought or mention
of failure. When he asked the all-

too-common question:
“When will this project be

done?” I replied: “We
have a 67% probability

of not exceeding either
budget or schedule by

more than 20% if we aim
for this date.”

Bad move.
He scowled and repeated:

“When will this project be done?”
Probabilities and percents were so
much mumbo-jumbo to him. He
wanted two things: complete
assurance that whatever schedule
we picked, we would guarantee to
deliver the system by that date;

and that the schedule would be
very short and would match or
beat what he had already promised
to his management and customers.
These are contradictory condi-
tions, of course, but I have heard
from literally hundreds of software
developers, engineers, and man-
agers over the years that this can be
the “as normal” state in the busi-
ness of software.

Because he was both my boss
and the software development
equivalent of a leader of a crime
syndicate, I promised a date that
met the second criterion. But we
did not make the date. Over the
years at this and other companies
I observed that this commitment
process was not unusual and,
when applied, was rarely success-
ful. In fact, it became something
of a game between the developers,
the management, and the cus-
tomer. Commitments would be
made that pretty much nobody
expected to be achieved; certainly
the development staff did not. In
talking with customers, it wasM

IC
H

A
EL

SL
O

A
N

The Business of Software Phillip G. Armour

Twenty Percent
Planning to fail on software projects.

22 June 2007/Vol. 50, No. 6 COMMUNICATIONS OF THE ACM

clear they often did not actually
expect the system to be delivered
when promised. Indeed, on several
occasions I found customers who,
from the start of the project, had
created plans for their staff expect-
ing a late delivery of the system.

The rules of the game required
that everyone pretend the
promised date was the real date.
When the inevitable slippage
became so obvious that it could
not be ignored, the pressure and
workload rose to intense levels. As
I’ve stated previously in this col-
umn, pressure causes teams to
work in a very inefficient and
error-inducing way due to the
high levels of “optional chaos” that
too-short schedules generate.1 Ulti-
mately such projects were invari-
ably delivered late, so while
“failure” could not be mentioned
or planned for (or even acknowl-
edged after the event sometimes),
it certainly occurred with astonish-
ing regularity.

UNDERESTIMATED UNDER

PRESSURE
It is interesting to ponder why
people and organizations contin-
ually act this way. Close up, such
behavior resembles the kind of
dysfunctional conduct families
may display when they are con-
fronted with addictions. A lot of
play-acting and denial occurs,
and a great deal of energy goes
into ignoring, obscuring, and
rationalizing the problem rather
than observing, acknowledging,

and fixing it.
There are other reasons too,

which relate to the way we esti-
mate. The most common method
I see companies use to create proj-
ect estimates is to first build a plan
for the project. This plan consists
of a network of interconnected
tasks, with their predicted depen-
dencies and relationships. For each
task, the amount of work or effort
it will consume and the amount of
schedule time it will take is deter-
mined. The sum of schedules for
the tasks along the critical path
gives us the expected schedule.
The sum of all tasks gives us the
expected total effort, and the
number of concurrent tasks at any
point in time gives us the expected
staffing profile.

For software project estima-
tion, the challenge is in the
word “expected.” Any esti-

mate, and any plan, is necessarily
based on what is currently
known. If there are tasks that will
need to be executed but are
unknown when the plan is cre-
ated, the plan won’t include
them. If the tasks take longer, or
turn out to have different depen-
dencies than we expect, the plan
will not show this. The plan and
the estimate created from it can
only be based on what we know,
not what we don’t know.

If we create a plan based on our
existing knowledge, it is reasonable
to think of that plan as having a
“50%” chance of success. That is,
if something goes wrong, or there
is something we didn’t think of
that happens to slow the project

down or cause more work, we will
overrun. If something turns out to
be easier than expected, or there
are tasks that are not actually
needed, we will underrun. These
estimates will only hit exactly if
either nothing unexpected hap-
pens at all or, equally unlikely, the
unexpected bad things are exactly
canceled by the unexpected good
things.

UNEVEN CHANCE

If we really did adopt 50%
plans, we would expect our suc-
cess rate in the business of soft-
ware to be, well, 50%. It is not.
It is much lower. It appears to be
around 20%.2

So how do we get down to
20%? Here are the steps I see
organizations taking:

• A plan is created based on what
is currently known.

• The summary schedule and
effort for the plan is used as the
project estimate.

• The planners/estimators are
instructed not to include any
“contingency,” but to give their
“best” estimate (whatever that
means). However, they do
sometimes consciously and
sometimes unconsciously insert
additional tasks or pad effort to
deal with perceived unknowns.

• If management suspects esti-

The Business of Software

1Armour, P.G. Real work, necessary friction, optional
chaos. Commun. ACM 47, 6 (June 2004).

2A number of sources seem to support this approximate
figure. A 2003 study of 421 projects conducted by
Computer Weekly in the U.K. indicated that only 16%
of projects were “successfully completed” (www.com-
puterweeklyms.com/pmsurveyresults/surveyresults.pdf).
An analysis of performance studies by the Brussels-
based IT-Cortex group concluded that “…about one
out of five IT projects is likely to bring full satisfac-
tion…” (www.it-cortex.com/Stat_Failure_Rate.htm).

mates have been padded, they
immediately cut the estimate
back again. Sometimes, in
anticipation of this the estima-
tors pad it even more, which
may cause management to cut
it even more.

• Over and above this “pad de
deux” [sic] dance, management
often applies other pressures to
force the estimate to be
reduced.

• One technique is the appeal to
the estimators’ and developers’
professional pride. In this situa-
tion, the manager asserts the
productivity will be higher
because the developers are
much more capable than they
themselves are assuming. A
friend described this as a man-
agement assertion that “…I
have more confidence in you
than you have in you…”.

• Another common ploy is the
“assume it’s simple” approach,
in which the estimators are
asked to consider what their
answer would be if the system
were not as complicated as they
really think it’s going to be. It
is, of course, true that develop-
ment will not take as long—if
the system does turn out to be
less complex than we think it’s
going to be.

• Other assumptions are made
regarding the development
environment. Perhaps the esti-
mators have factored in a cer-
tain amount of project
turnover. Then they are asked,
“what if the turnover was less,
wouldn’t the project be done
faster?” It would—if there was

less turnover.
• The same arguments are made

for scope creep, change requests,
the effectiveness of development
tools, organizational process,
and host of other factors.

A ll of these considerations are
true—if the project turns
out to be easier than we

expect it to be or we are more effi-
cient that we think we will be, of
course we will get it done earlier
using fewer resources. But the orig-
inal 50% estimate was predicated
on the expected values, not the
optimistic values. All these “what-
ifs” simply hide the risk; they take
the risk from the projected solu-
tion and hide it in the rosy
assumptions.

The opposite is usually true.
Things don’t usually turn out to
be easier than we think they
will—they turn out to be more
difficult. What the assumptions do
is remove the resources necessary
to deal with the inherent risk. But
just because we pretend the risk
isn’t there doesn’t mean it goes
away.

Rather than adding resources to
deal with typical unforeseen cir-
cumstances we are actually remov-
ing resources necessary to deal with
things we expect to happen.

TO PLAN TO FAIL
So the probability of success for
the project starts out at a nomi-
nal 50%. Each optimistic
assumption that is postulated
removes resources from the proj-
ect and hides the risk in the
assumption. This has the effect

of reducing the overall probabil-
ity of completing the project
using the assigned resources.
Starting at 50%, the probability
gets whittled down. When it
approaches a 20% likelihood of
success, the estimators and team
members can finally muster a
sufficiently forceful argument
that any further reduction is
simply too unlikely and that,
despite further pressure, they
cannot be persuaded to buy into
any further reduction. The
counter-pressure builds up to a
level where equal and opposite
force prevents further reduction
in the probability.

So the estimate stops at around
a 20% probability of success and
this is the level at which the aver-
age software projects are commit-
ted. We know this because of the
overall “success rate” of software
projects. We know that 80% of
software projects fail to meet their
goals.

This is an odd behavior for a
business because it means we have
adopted a typical and consistent
business practice that means, if
everything works out the way we
expect it to, our projects will not
fulfill their commitments.

Quite literally, we are planning
to fail.

Phillip G. Armour
(armour@corvusintl.com) is a senior consultant
at Corvus International Inc., Deer Park, IL.

© 2007 ACM 0001-0782/07/0600 $5.00

c

COMMUNICATIONS OF THE ACM June 2007/Vol. 50, No. 6 23

