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1 Overview

My primary research lies at the intersection of representation theory of associative
algebras (quivers) and invariant theory. More specifically, the study of the geometry
of representation spaces for string algebras.

Background. Quivers and quivers with relations appeared first in connection to rep-
resentation theory of finite-dimensional associative algebras. Since their introduction,
they have been used to study a range of important questions including the Deligne-
Simpson problem ([8]), saturation for Littlewood-Richardson coefficients ([11]), clus-
ter algebras ([5], [6], [12],[23]), and algebraic geometry ([7], [11], [24]). Drozd showed
in [14] that there is a trichotomy in the representation types of quivers (an quivers
with relations): either there are only finitely many indecomposable representations
(finite type), at most finitely many one-parameter families of indecomposables in each
dimension vector (tame type), or the category of modules over the free algebra on two
non-commuting variables can be embedded into the category of representations (wild
type). In the former two cases, it is feasible to explicitly describe all indecomposable
representations.

Quivers of finite and tame representation type were classified by Gabriel ([15]) and
Nazarova ([22]), respectively. Gabriel shows that the quivers of finite representation
type are those whose underlying undirected graphs are simply laced Dynkin diagrams,
and Nazarova shows that those of tame representation type correspond to extended
Dynkin diagrams.

In the context of quivers with relations, far less is known. One family that has been
shown to be of tame representation type are the string algebras, as defined in [3]
and motivated by work of Gelfand-Ponomarev [17]. These algebras are interesting
in that the indecomposable representations can be described as certain walks on
the quiver ([4], [21], [28]), and Auslander-Reiten sequences can be constructed by
performing operations on these walks. One of the exceptional aspects of these algebras
is that while they are tame, the number of one-parameter families of indecomposable
representations grows non-polynomially with the dimension (in contrast with the
example of tame quivers without relations).

Rings of Semi-Invariants. One natural question is what data the geometry of the
moduli spaces of representations captures about the category of representations. If
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CQ/I is a quiver with relations and β is a dimension vector, we denote by RepCQ/I(β)
the variety of representations of CQ/I of dimension β. This space admits an action
of GL(β), a suitable product of general linear groups, by change of basis, and orbits
correspond to isomorphism classes of representations. The rings C[RepCQ/I(β)]SL(β)

often reflect the nature of the category of representations of the quiver with relations.
The following are natural problems.

Problem 1: Characterize tame type by the geometry of representation spaces. De-
scribe their rings of semi-invariants.

Problem 2: Determine degree bounds for the generators and relations of rings of
(semi-)invariant functions.

In the context of problem 1, Skowroński-Weyman [26] studied these rings of semi-
invariants for quivers (without relations). They showed that if the quiver is of finite
type, the rings of semi-invariants are polynomial rings, if it is of tame type, the rings of
semi-invariants are complete intersections. In wild type, however, there are dimension
vectors in which the rings of semi-invariants are not complete intersections.

Following this work, a number of authors have attempted to describe the rings of semi-
invariants for quivers with relations that are tame (see [1], [13], [19], [27], [29]). In
particular, Kraśkiewicz ([19]) constructed examples of string algebras (so algebras of
tame type) whose rings of semi-invariants are not necessarily complete intersections.
This would indicate that a more thorough inspection of these algebras is required.

Semi-Invariants for Gentle String Algebras. In my first paper, I describe a
procedure to construct the rings of semi-invariants for components of RepCQ/I(β)
when CQ/I is a gentle string algebra. The crucial observation in this case is that the
representation spaces are products of varieties of complexes, as studied by DeConcini-
Strickland in [9]. They describe the irreducible components and coordinate rings of
these varieties via Schur modules. This allows us to show that the rings of semi-
invariants are semi-group rings, which are in fact coordinate rings of toric varieties.
These semi-groups can be encoded by so-called matching graphs in such a way that
generators correspond to particular walks on the graph, and relations correspond to
certain configurations. In this way, explicit degree bounds for the generators and
relations can be determined.

Generic Representations. Another question concerning representation spaces is a
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problem originally posed by Kac [18]. Let Q be a quiver, and β a dimension vector. In
each component of the representation space, does there exist an open (or dense) set U ,
and a decomposition of β into a sum of dimension vectors β(1) + . . .+β(s) such that
for each representation V in U , V decomposes into a direct sum of indecomposable
representations V (1) ⊕ . . . ⊕ V (s) where dimV (i) = β(i)? Such a decomposition of
β is referred to as its canonical decomposition, and the representations in the open
set are called generic representations. In the same article, Kac answers the question
in the affirmative, although the proof is non-constructive. Later, Derksen-Weyman
[10] and Schofield [25] gave independent algorithms for determining this canonical
decomposition in the case of representations of quivers.

Problem 3: Given a quiver with relations, and an irreducible component of RepCQ/I(β),
determine the canonical decomposition of β, and the generic representations (with
respect to the irreducible component).

GIT Quotients. The result of Kraśkiewicz (a tame algebra with a ring of semi-
invariants which is not a complete intersection) shows that geometric conditions on
the rings of semi-invariants may not be fine enough to characterize tameness. Fixing
a weight χ for GL(β) once can construct the GIT quotient RepCQ/I(β)//χ GL(β) :=

Proj
⊕

n≥0 C[RepCQ/I(β)]χ
n
. It has been shown by Chindris [7] that for path algebras

of quivers, this GIT quotient is simply a projective space.

Problem 4: Characterize tameness by geometric conditions on the GIT quotient.

Generic Representations for Gentle String Algebras. In my second paper,
motivated by the combinatorics involved in determining the generators for the rings
of semi-invariants, and prior work by Kraśkiewicz-Weyman [20], I describe a method
for constructing the generic representations in irreducible components of RepCQ/I(β
when CQ/I is a gentle string algebra. This description allows us to determine the
GIT quotient in certain cases. Namely, in the case that the generic representation
of RepCQ/I(β) is a band, we can indeed show that the GIT quotient is a product of
projective spaces. The method of proof in this case amounts to showing that certain
modules have no self-extensions, and such modules are often encountered in tilting
theory, quiver Grassmannians, and cluster algebras from surfaces.

Future Research. I am exploring a number of new questions. It is well-known that
string algebras are quotients of gentle string algebras, so the techniques developed thus
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far may be able to be applied to string algebras in general. It is a simple consequence
of DeConcini-Strickland [9] that components of RepCQ/I(β) are Cohen-Macaulay and
normal when CQ/I is gentle, but it is not clear whether or when these properties
hold for components of string algebras. In fact, even irreducible components of string
algebras are not known.

The construction of the generic module in an irreducible component of RepCQ/I(β)
described above does not spell out the canonical decomposition of a given dimension
vector, although it can be determined by hand on any example. It would be beneficial
to determine the dimension vectors in which the generic representations are indecom-
posable (Schur representations), and specifically when they are indecomposable string
modules. Because the proof that the constructed representations are generic involves
showing the vanishing of self-extension groups, the method could be employed to de-
termine tilting modules, which are useful in the study of cluster algebras arising from
surfaces.

2 My Results

Definition 2.1. A gentle string algebra is an algebra with presentation CQ/I satis-
fying the following:

a. Every vertex is the source of and target for at most two arrows (respectively);

b. For every arrow b ∈ Q1 there is at most one arrow a and at most one arrow c
as in the diagram a // b // c // such that ba /∈ I, and cb /∈ I;

c. For every arrow b ∈ Q1 there is at most one arrow a and at most one arrow c
as in the diagram a // b // c // such that ba ∈ I, and cb ∈ I;

d. I is quadratic (generated by 2-paths).

A string algebra is an algebra with conditions (c) and (d) removed.

Proposition 2.2 (C). Every acyclic string algebra is a quotient of a gentle string
algebra.
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Definition 2.3 (C). A coloring of a quiver Q is a map c : Q1 → S (S is some finite
set of colors) satisfying c−1(s) is a path for each s ∈ S. The colored ideal Ic is the
ideal in CQ generated by the set {ba | c(b) = c(a), h(a) = t(b)}.

Proposition 2.4 (C). Every acyclic gentle string algebra CQ/I admits a coloring c
such that I = Ic.

This is NOT true when Q has cycles. Henceforth let us call CQ/I a colored string
algebra when it is gentle and admits a coloring.

Example 2.5.

GSA-example.pdf

Remark 2.6. Suppose that CQ/I is a gentle string algebra, with a coloring c. Then
the variety RepCQ/I(β) is a product of varieties of complexes.

This is clear, for a representation consists of the assignment of a linear map to each
arrow, and the ideal gives that the composition of two maps of the same color should
be zero.

Definition 2.7. Let CQ/Ic be a colored string algebra. A rank map for a dimension

vector β is a map r : Q1 → N such that r(a) + r(b) ≤ βx whenever a // x b // and
c(a) = c(b). Define the partial order � on the set of rank sequences for β by r � r′

if and only if r(a) ≤ r′(a) for each a ∈ Q1.

Proposition 2.8 (Independent proof Carroll). (Corollary to DeConcini-Strickland
”On Varieties of Complexes”) The irreducible components of RepCQ/I(β) are given
by

RepCQ/I(β, r) := {M ∈ RepCQ/I(β) | rank(Ma) ≤ r(a)}

for r maximal.

There is a filtration on the coordinate ring of each variety of complexes whose associ-
ated graded is given by a nice formula. This extends to RepCQ/I(β, r), and the result
is given below, after a few preliminary notations:
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a. Let Λr = {λ : Q1 → P | λ(a) has at most r(a) parts}, where P is the set of
partitions;

b. Let X = {(x, s) ∈ Q0×S | there is an arrow of color s incident to the vertex x};

c. Suppose λ ∈ Λr, and (x, s) ∈ X . Let a, b ∈ Q1 be the arrows with c(a) =
c(b) = s and h(a) = t(b) = x. Denote by λ(x, s) = (λ(b), 0, . . . , 0,−λ(a)) where
−λ(a) = (−λ(a)r(a),−λ(a)r(a)−1, . . . ,−λ(a)2,−λ(a)1), and λ(x, s) is of length
βx (i.e., we put enough zeros to fill a vector of length βx);

d. If µ is a non-increasing sequence of integers of length n, then SµCn is the corre-

sponding Schur module. That is S(1,1,1,...,1,0,0,...,0)Cn =
∧lCn and S(l,0,...,0)Cn =

SlCn.

Proposition 2.9. Let CQ/I be a colored string algebra, supplied with a coloring
c : Q1 → S. Let β be a dimension vector, and r a maximal rank sequence. Then

C[RepCQ/I(β, r)] =
⊕
λ∈Λr

⊗
(x,s)∈X

Sλ(x,s)Vx

While this is true as stated, the result is slightly deeper: there is a filtration on
C[RepCQ/I(β, r)] whose associated graded algebra is that given above. This result
holds in more generality, as there are many zero-relation algebras which can be col-
ored. The combinatorics in the case of gentle string algebras are quite nice, since at
each vertex we have the tensor product of at most two Schur modules.

Definition 2.10. For each x ∈ Q0, let s1(x), s2(x) be the elements of S such that
(x, s1(x)), (x, s2(x)) ∈ X. Let ΛSI

r be the set of λ ∈ Λr such that for each x ∈ Q0,
λ(x, s1(x))i−λ(x, s1(x))i+1 = λ(x, s2(x))βx−i−λ(x, s2(x))βx−i+1. If s(x) is the unique
color incident to x ∈ Q0, then the requirement reads λ(x, s(x))i − λ(x, s(x))i+1 = 0.

Theorem 2.11 (C). Let CQ/I be a gentle string algebra with coloring c, dimension
vector β, and maximal rank sequence r.

a. ΛSI
r is a semi-group with respect to component-wise addition of vectors, and

C[ΛSI
r ] is a polynomial ring over a semi-group ring (ΛSI

r )◦;

b. C[RepCQ/I(β, r)]
∏

x∈Q0
SL(βx) ∼= C[ΛSI

r ], where the latter is the semigroup ring;
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c. C[ΛSI
r ] is the coordinate ring of a toric variety.

The combinatorics of the proof for part (a) are interesting, but they lead most notably
to the following:

Theorem 2.12 (C). Same assumptions as before. The ring C[RepCQ/I(β, r)]
SL(β) is

generated by elements of degree bounded by∑
a∈Q1

2

(
r(a) + 1

2

)

The proof of this theorem relies on an explicit description of generators and relations
for the semi-group (ΛSI

r )◦. This semi-group is an example of a so-called matching
semigroup, which I define in the first paper.

Definition 2.13. Let f1, . . . , f2m be a collection of N-linear functionals fi : Nl → N,

written fi(x) =
l∑

j=1

αjixj. Let U(f) be the set {u ∈ Nl | fi(u) = fi+m(u) for all i =

1, . . . ,m}. The semi-group U(f) is called a matching semigroup if

• αji ∈ {0, 1} for 1 ≤ i ≤ 2m, 1 ≤ j ≤ l;

• for each i, the set {j ∈ [1, 2m] | αji 6= 0} has at most two elements.

Simply put, matching semigroups are given by equalities of certain N linear functions,
and in the set of defining equations, each variable shows up at most twice. This latter
point is quite important, because it allows us to build a graph from the defining
equations, and edges can correspond to variables.

Definition 2.14. Suppose that U(f) is a matching semigroup, defined by 2m func-
tionals. Define the graph G(f) as follows: G(f) has 2m vertices, one corresponding
to each functional fi, and edges of the following type:

• a dotted edge i i+m for i = 1, . . . , 2m;

• a solid edge labeled xt i
xt j if αti = αtj = 1;
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• a solid self-loop labeled xt at i if αti = 1 and is the unique such.

The crucial point is certain walks on the graph G(f) correspond to elements of U(f),
and in fact that every element of U(f) can be realized as a walk on the graph. Namely:

Definition 2.15. A walk w on the graph G(f) is called an alternating string if the
first and last edge are loops, and the edge types alternate (solid-dotted-solid-...); and
is called an alternating band if w is a cycle, the first edge is dotted, the last edge is
solid, and the edge types alternate. If w is a walk on G(f), then define by u(w)j the
number of times that the edge labeled xj is traversed in the walk w.

Proposition 2.16 (C).

• If w is an alternating string or band, then u(w) ∈ U(f).

• If u ∈ U(f), then u can be written as a sum of u(w) over alternating strings
and bands. That is {u(w) | w is an alternating string or band} generates U(f)
as a semigroup (but not necessarily minimally).

• If u(w) is irreducible (i.e., cannot be written as an N linear combination of
others, then fj(u(w)) ≤ 2 for each j. In particular, u(w)i ≤ 2 for each i.

The second portion of my research deals with the determination of the generic modules
in irreducible components RepCQ/I(β, r). That is, determine a module (or at worst
finite collection of one-parameter families of modules) in RepCQ/I(β, r) so that the
orbit under GL(β) (or the union of the GL(β) orbits) is dense.

The reason for this is the following: there is a second description of rings of semi-
invariants as follows. Let CQ/I be an arbitrary quiver with relations, β a dimension
vector, and RepCQ/I(β)z an irreducible component of the representation space. There
is a bilinear form on the Grothendieck group of the category RepCQ/I given by

< dimV, dimW >=
∑
i≥0

dim ExtiCQ/I(V,W )

(It can be shown that this is independent of the choice of V , W in given dimension
vector). If the projective dimension of V is 1,

V P0(V )oo P1(V )
δ0oo 0oo
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we can apply HomCQ/I(−,W ) to this resolution,

0 // HomCQ/I(V,W ) // HomCQ/I(P0(V ),W )
dVW // HomCQ/I(P1(V ),W ) // Ext1(V,W ) // 0

is an exact sequence. If < V,W >= 0, then (after identifying basis) dVW is a square
matrix. Derksen-Weyman prove the following:

C[RepCQ/I(β)z]
SL(β) ={cV (−) = det(dV− | p.d.(V ) ≤ 1, < dimV, dimW >= 0}

In addition, the weight of cV (−) is< V,− >. So in order to describe C[RepCQ/I(β)z]
SL(β),

it is enough to determine those V in the category β⊥ = {V ∈ RepCQ/I(β) |}

The impetus for determining the general elements in the irreducible components is
then clear: the weight spaces will be spanned by cV for V general. Motivated by
the combinatorics involved with calculating semi-invariants, we give an explicit con-
struction of a dense subset in RepCQ/I(β, r) when CQ/I is a gentle string algebra.
This consists of defining a module (or family of modules) so that the orbit (or the
union of the orbits) is dense. In the case that the modules that we construct are rigid
(admit no self-extensions), the result follows from Voigt. [?]. When there is a family
of modules, the result also relies on showing that the general extension groups are
trivial.
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