
108 July 2006/Vol. 49, No. 7 COMMUNICATIONS OF THE ACM

Knowing the kinds of modeling errors they are most likely to produce helps
prepare novice analysts for developing quality conceptual models.

Assisting Novice Analysts in
DEVELOPING QUALITY CONC EPTUAL MODELS WITH UML

During the analysis phase of information systems
development, systems analysts capture and repre-
sent systems requirements using conceptual models
(such as entity-relationship diagrams, class dia-
grams, and use case diagrams). Considering the fact
that the reported fail-
ures of a significant per-
centage of developed
systems are linked to
faulty requirements, it is
extremely important for
these analysts and criti-
cal to the system’s ulti-
mate success to ensure
the quality of the con-
ceptual models they
develop in the early
phases of systems devel-
opment.

However, developing
good-quality conceptual
models is a challenge for many analysts. The models
must support communications among end users and
developers in defining and documenting systems
requirements as faithfully as possible. The models’
effectiveness is influenced by the complex interac-
tions among modeling constructs, task requirements,
analysts’ own modeling experience and cognitive
abilities, and interpreters’ experience with conceptual
models [11]. Novice analysts developing conceptual
models have more difficulty compared to experienced
analysts in terms of domain-specific knowledge,

problem structuring, and cognitive processes [9]. In
addition, for novice analysts a lack of established val-
idation procedures [10] makes conceptual modeling
that much more difficult.

Many systems analysts develop conceptual models
by following the object-
oriented approach in the
modeling techniques of
the Unified Modeling
Language (UML) [6]. For
example, UML provides
12 different types of dia-
grams for documenting a
system from a variety of
perspectives, and a typical
systems analyst is
expected to be familiar
with many of them.
Though UML is widely

used, the UML diagrams are not highly rated by ana-
lysts in terms of usability [2]. Several practitioners
offer recommendations and guidelines (such as [3,
4]), suggesting analysts employ commonly used pat-
terns (such as [1, 5]) when using UML modeling
techniques. However, typical novice analysts fail to
derive maximum benefit from such assistance due to
the cognitive overload involved in the recommenda-
tions and guidelines.

Here, we present the results of an empirical study
we conducted aimed at identifying the most typical
set of errors frequently committed by novice systems
analysts in four commonly used UML artifacts—use

By Narasimha Bolloju and Felix S.K. Leung

Bolloju fig 1 (7/06)

Figure 1. Modeling activities and artifacts developed.

Use case modeling
(Use case diagrams and

descriptions)

Dynamic modeling
(Sequence diagrams)

Domain modeling
(Class diagram)

Modeling activities and artifacts..

COMMUNICATIONS OF THE ACM July 2006/Vol. 49, No. 7 109

C EPTUAL MODELS WITH UML

case diagrams, use case descriptions, class diagrams,
and sequence diagrams—and discuss how they affect
the quality of artifacts developed. Ensuring that arti-
facts are free of such errors helps novice analysts
develop better-quality UML artifacts. Our findings
are relevant to instructors of systems analysis courses,
software quality-assurance teams, CASE tool develop-
ers, and researchers in the field of conceptual model-
ing, as well as to the analysts themselves.

Use case-driven modeling is a popular approach
employed in systems development using the object-
oriented method. First to be developed are use case
models comprising use case diagrams and use case
descriptions; the models then guide subsequent mod-
eling activities. The figure here outlines major activi-
ties and artifacts (in parentheses) developed through
these activities. Use case models are used in the analy-
sis phase to capture and represent high-level system
requirements. These models include two types of
components:

Diagrams. To depict use cases corresponding to ele-
mentary business processes, associations among
actors and use cases, and relationships (such as
includes, extends, and generalization) among use
cases; and

Descriptions. To provide requirements described in
terms of main scenarios with a sequence of steps
and alternate scenarios described as extensions to
steps in the main scenarios.

Domain models, represented by analysts through
class diagrams, include classes from the problem

domain and a variety of relationships (such as gener-
alization hierarchies, associations, and aggregations)
among classes. Each class is described by the analyst
through a set of attributes and a set of operations.
Although classes, attributes of classes, and relation-
ships among classes are identified mostly through
descriptions in use case models, most operations of
classes are derived from interaction diagrams (such as
sequence and collaboration).

Dynamic models (such as sequence diagrams and
collaboration diagrams) are used by analysts to cap-
ture system behavior through a sequence of message
flows among classes and objects. They help identify
and depict responsibilities (expressed as operations)
of various classes and objects in fulfilling the systems
requirements previously identified in use case
descriptions.

The conceptual model quality framework dis-
cussed in [7] provides a systematic way to analyze the
quality of UML artifacts from syntactic, semantic,
and pragmatic quality perspectives (see the sidebar
“Quality Categories for Conceptual Models”). Dif-
ferent types of errors in artifacts help produce differ-
ent types of quality. For example, semantic errors
(such as wrong cardinality specification and missing
attributes in domain models) affect the validity and
completeness aspects of semantic quality, respec-
tively. Table 1 lists examples of errors belonging to
these three quality categories. Here, we consider that
the relationship between the overall quality of arti-
facts and the numbers of errors that can be identified
is negatively correlated. That is, fewer errors indicate
better quality.

110 July 2006/Vol. 49, No. 7 COMMUNICATIONS OF THE ACM

UML ARTIFACTS ANALYZED

Using the framework in [7], we analyzed the quality
of the UML artifacts in 15 team-project reports sub-
mitted by final-year full-time undergraduate stu-
dents taking a course in object-oriented analysis and
design in the Department of Information Systems at
the City University of Hong
Kong. All had previously taken a
structured systems analysis and
design course in their second year
of the program. They worked in
teams of three or four students
each on semester-long team proj-
ects. Each project required a final
submission consisting of four
parts: a use case diagram; a set of
use case descriptions; a class dia-
gram; and a set of sequence dia-
grams corresponding to the use
case descriptions. All teams used
Microsoft Visio, a diagramming
program with rudimentary CASE
support, for drawing UML dia-
grams and Microsoft Word for writing use case
descriptions with a provided document template.

The teams worked on projects involving a variety of
business applications, including banking, hotel reserva-
tions, movie ticketing, and airline reservations. These proj-
ects involved comparable complexity in terms of the
modeling skills and effort that would be required of the
typical novice analyst. On average, the use case diagrams

included six actors and 16 use cases with three or four
important use cases described in detail. The class diagrams
included an average of 14 classes and up to 50 attributes
and 23 operations across all classes. Each sequence dia-
gram, corresponding to a use case description, included
an average of six objects and 14 messages.

To prepare a coding scheme, we identified and
compiled a list of errors from each artifact of each
project included in the study, then separated the
errors into the three categories of quality—syntactic,
semantic, pragmatic—according to the framework in
[7]. The final coding scheme included 13, 14, 35, and
23 errors for use case diagrams, use case descriptions,
class diagrams, and sequence diagrams, respectively.

As part of the study, we tested the coding scheme
with one of the project reports that had been excluded
from the rest of the study, then separately examined
each artifact of 14 remaining projects (on separate

Bolloju table 1 (7/06)

Semantic Quality

Use Case
Models

Domain
Models

Dynamic
Models

Syntactic Quality

Inappropriate use case
names (such as not
beginning with an action verb)

Invalid notation in use
case diagram

Missing cardinality
details for associations

Inappropriate naming of
classes and associations

Improper positioning of classes
and/or objects along the
timeline in sequence diagram

Invalid relationship (include,
extend, or generalization)
between use cases

Incomplete scenario
description

Incorrect cardinality
specification

Used aggregation in
place of association

Incomplete specification
of message parameters

Pragmatic Quality

Poor layout of use case
diagram

Presence of implementation
details (such as user interface)
in use case description

Redundant attributes and
associations

Specialization with little
distinction among subclasses

Inappropriate delegation
of responsibilities

Table 1. Example errors
in various quality

categories.

Quality Categories for Conceptual Models

Many researchers today are trying to describe and define the various aspects of the quality of conceptual models in UML.
For example, [7] focused on the need for a framework addressing both process and product in quality, proposing a framework
that borrows three linguistic concepts—syntax, semantics, and pragmatics—as suitable categories for defining the quality of
conceptual models:

Syntactic quality. The syntactic correctness of a model implies that all statements in it depend on the syntax of the language,
capturing how a given model adheres to the language rules or to the syntax. Therefore, fewer errors and deviations from the
rules indicate better syntactic quality.

Semantic quality. This category captures the quality of a model in terms of what the model lacks that is present in the
domain, as well as what the model includes that is not present in the domain. Semantic quality is described in terms of validity
and completeness goals. The validity goal specifies that all statements in the model are correct and relevant to the problem
domain. The completeness goal specifies that the model contain all statements about the problem domain that are correct and
relevant. However, it may be that these two goals cannot be achieved, unlike syntactic correctness, which can be achieved.

Pragmatic quality. This category addresses the comprehension aspect of the model from the stakeholders’ perspective. Prag-
matic quality captures how the model has selected “from among the many ways to express a single meaning” and essentially
deals with making the model easy to understand. The comprehension goal specifies that all audience members (or interpreters)
completely understand the statements in the model that are relevant to them.

These categories address various aspects of quality that require more and more analyst effort and expertise to achieve. As an
overall framework, they can be applied to graphic and text-oriented modeling artifacts, including entity relationship diagrams,
data flow diagrams, object models, and use case descriptions.

copies of the reports) for the errors listed in the cod-
ing scheme. We noted only the first occurrence of
each error in a project, and we ignored any multiple
occurrences belonging to the same project. We then
exchanged with each other the list of errors we had
identified, and independently verified the presence of
the errors using our copies of arti-
facts. We identified a total of 380
errors in the 14 projects, with an
overall inter-rater agreement of
75% after the verification. This
level of agreement is acceptable,
considering the large number of
possible error codes (85) in the
coding scheme, the complexity of
the highly subjective process of
finding the errors in artifacts, and the exclusion of
errors not identified from the calculation of inter-rater
agreement. However, to reach a complete inter-rater
agreement we had to discuss and resolve the remain-
ing differences in error occurrences in each project in
the study.

QUALITY OF UML ARTIFACTS

Table 2 outlines the distribution of
errors we identified in the study in
various quality categories for the
four types of artifacts. It indicates
the relative difficulty of developing
high-quality artifacts. Among the
artifacts we considered, we found
that developing quality use case
diagrams and descriptions was dif-
ficult. Fewer errors in class dia-
grams might be attributed to
analysts’ prior experience with the
entity-relationship modeling tech-
nique. Meanwhile, a good number
of errors in semantic and pragmatic
categories of sequence diagrams
might have been preempted due to
syntactic errors.

To identify the set of frequently
committed errors, we considered
only those errors we identified
across five or more projects in dif-
ferent categories of quality (see
Table 3). Since many of the syntac-
tic errors are easily prevented through CASE tools
(such as Rational Rose and Visual Paradigm for
UML), we focus here on the errors that affect seman-
tic and pragmatic quality.

Use case diagrams and descriptions. Larger num-
bers of semantic and pragmatic errors in these artifacts

compared to syntactic errors might have been the
result of the simple syntax of use case diagrams and
the document template provided for use case
descriptions. This difference in numbers of errors
also highlighted the difficulties in developing good
quality use case models, especially in relating use

cases in diagrams
and in writing
steps in use case
descriptions. In
conducting the
study we observed
that most of the

use case relationship errors were in use cases involv-
ing the “extends” type of relationship. Some practi-
tioners even recommend against using this type of
relationship between use cases due to its limited util-
ity. Many of the pragmatic errors in use case descrip-
tions (such as used implementation details in step
description and manual operations) may be attrib-
uted to novice analysts’ inability to separate logical
and physical specifications and identify the func-

tionality to be provided by the system.
Class diagrams. Participating team members’ prior

experience with entity-relationship modeling appears
to have contributed to overall quality both positively
and negatively. We frequently observed errors related
to association specification, especially the cardinality
details—either wrong range of values or reversed val-
ues. Most of the errors we observed in the pragmatic
quality category (such as derived or redundant attrib-
utes and the use of keys) can be attributed to the ana-

COMMUNICATIONS OF THE ACM July 2006/Vol. 49, No. 7 111

Bolloju table 2 (7/06)

Semantic

Use Case Diagrams
and Descriptions

Class Diagrams

Sequence Diagrams

Syntactic

29

26

38

62

32

41

Pragmatic

56

33

33

Table 2. Distribution of
various types of errors.

Bolloju table 3 (7/06)

Semantic

Use Case
Diagrams

Use Case
Descriptions

Class
Diagrams

Sequence
Diagrams

Syntactic

Improper notation
(57%)

Use case name
mismatch between
diagram and
description (64%)

Nonimplicit
operations from
sequence diagram
not shown (64%)

Implicit operations
listed (50%)

Missing initial trigger
(71%)

Return to an object
different from caller
(64%)

Class/object does
not belong to class
diagram (50%)

Invalid relationship between use
cases (64%)

Missing a critical step (64%)

Incomplete or ambiguous step
description (64%)

Invalid extension to a step (50%)

Wrong association cardinality
range or multiplicity (50%)

Wrong location of attributes (36%)

Wrong location of operations (36%)

Operation cannot be realized
using existing attributes and
relationships (36%)

Critical message parameters
missing (71%)

Message parameters used before
their values are available (64%)

One or more essential classes/
objects left out the sequence
diagram (50%)

Pragmatic

Manual operations listed as
use cases (57%)

Excessive use of manual steps (71%)

Use of implementation details (such
as user interface) database (64%)

Excessive splitting of steps (57%)

Insufficient distinction among
subclasses (43%)

Presence of derived or redundant
attribute(s) (36%)

Responsibility delegated to a
wrong object (57%)

Table 3. Frequently
observed errors in

various quality
categories.

lysts’ prior experience with database design and
implementation. We also noticed instances where the
subclasses in class hierarchies with insufficient dis-
tinction among subclasses could have been due to
either the urge to use this feature or the lack of depth
in requirements specified in use cases.

Sequence diagrams. Most of the errors we saw can be
attributed to novice analysts’ inexperience in problem-
solving skills (such as decomposition) and to their diffi-
culty understanding object-orientation. Many syntactic
errors are related to message flow (such as missing initial
trigger messages and returning control to objects other
than the calling object). Pragmatic errors included
improper delegation of responsibility—often to a wrong
object/class—and/or making a class/object perform
computations that can be delegated to other objects.

One limitation of the study was that we used arti-
facts from the project work of undergraduate students
and might have identified a greater number of errors
than if we had looked at only the work of experienced
analysts. The students attending the object-oriented
analysis and design course had already completed a
course on structured systems analysis and design.
Their project work in the object-oriented analysis and
design course required considerable effort by teams of
three or four students over a 13-week semester. As a
result, the quality of the artifacts they developed may
be considered comparable to the quality of artifacts
developed by typical novice systems analysts.

We addressed the pragmatic quality in the study
from the perspective of only one type of stake-
holder—the instructor or tutor in the role of experi-
enced analyst. This approach can be expected to
minimize certain problems associated with employing
inexperienced students (such as [8]) in evaluating the
quality of the artifacts produced by other students.
Although this approach ensured that we identified as
many errors as possible from this perspective, it is
important to consider other types of stakeholders or
interpreters of conceptual models (such as systems
designers, programmers, and end users) for identify-
ing quality problems from other perspectives.

IMPLICATIONS

The framework in [7] enabled us to identify a small
set of errors typically committed by novice systems
analysts. By ensuring that the artifacts being created
are free from such errors, novice systems analysts
will be able to develop higher-quality conceptual
models. Knowing these errors should help practition-
ers design error-prevention and error-removal mecha-
nisms to enhance the quality of artifacts developed by
novice analysts. Since many of the errors pertaining to
the syntactic category can be eliminated through

CASE tools, we limit our recommendations to the
semantic and pragmatic categories. Training pro-
grams for novice analysts, based on these errors,
aimed at imparting skills and techniques (such as
writing proper step descriptions in use cases, defining
useful generalization-specialization hierarchies, and
delegating responsibilities to objects) would be effec-
tive in preventing many types of semantic and prag-
matic errors. The errors we identified are also useful
for developing checklists and guidelines for quality-
assurance teams. Moreover, instructors teaching sys-
tems analysis can focus on imparting modeling skills
that account for these errors.

Our study also suggests several interesting direc-
tions for research on conceptual modeling (such as
investigating relationships among different types of
quality among artifacts, developing validation proce-
dures, and developing instruments for measuring
quality from a variety of perspectives). Developers of
CASE tools can incorporate facilities to provide guid-
ance to novice analysts in preventing typical novice
errors during the modeling process.

References
1. Adolph, S. and Bramble, P. Patterns for Effective Use Cases. Addison

Wesley, Boston, 2003.
2. Agarwal, R. and Sinha, A. Object-oriented modeling with UML: A study

of developers’ perceptions. Commun. ACM 46, 9 (Sept. 2003), 248–256.
3. Ambler, S. The Elements of UML Style. Cambridge University Press,

New York, 2003.
4. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, Boston, 2001.
5. Fowler, M. Analysis Patterns: Reusable Object Models. Addison Wesley,

Menlo Park, CA, 1997.
6. Introduction to OMG’s Unified Modeling Language (UML) (Mar. 27,

2004); www.omg.org/gettingstarted/what_is_uml.htm.
7. Lindland, O., Sindre, G., and Sølvberg, A. Understanding quality in

conceptual modeling. IEEE Software 11, 2 (Mar. 1994), 42–49.
8. Moody, D., Sindre, G., Brasethvik, T., and Sølvberg, A. Evaluating the

quality of information models: Empirical testing of a conceptual model
quality framework. In Proceedings of the 25th International Conference
on Software Engineering (Portland, OR, May 3–10). IEEE Computer
Society, Washington, D.C., 2003, 295–305.

9. Schenk, K., Vitalari, N., and Shannon Davis, K. Differences between
novice and expert systems analysts: What do we know and what do we do?
Journal of Management Information Systems 15, 1 (Summer 1998), 9–50.

10. Shanks, G., Tansley, E., and Weber, R. Using ontology to validate con-
ceptual models. Commun. ACM 46, 10 (Oct. 2003), 85–89.

11. Wand, Y. and Weber, R. Research commentary: Information systems
and conceptual modeling: A research agenda. Information Systems
Research 13, 4 (Dec. 2002), 363–376.

Narasimha Bolloju (narsi.bolloju@cityu.edu.hk) is an associate
professor in the Department of Information Systems at the City
University of Hong Kong.
Felix S.K. Leung (isfelix@cityu.edu.hk) is a Ph.D. candidate in
the Department of Information Systems at the City University of
Hong Kong.

© 2006 ACM 0001-0782/06/0700 $5.00

c

112 July 2006/Vol. 49, No. 7 COMMUNICATIONS OF THE ACM

