
Software Patterns i

Software Patterns

Software Patterns ii

Software Patterns

SIGS Management Briefings present cutting-edge information on object-oriented topics.
Written by experts in their respective areas, these clear and concise papers are the fastest
way to get the latest findings by today’s top OO professionals. For a full listing of SIGS
Management Briefings, contact SIGS Books & Multimedia customer service department
at (800)871-7447 (voice), (212)242-7574 (fax), http://www.sigs.com.

Software Patterns iii

Software Patterns

James O. Coplien

B ell Laboratories, The Hillside Group

iv Software Patterns

© Copyright 1996 AT&T

© Copyright 2000, Lucent Technologies, Bell Labs Innovations. All Rights Re-
served.

Originally published by:
SIGS Books & Multimedia
71 West 23rd Street, Third Floor
New York, New York 10010
http://www.sigs.com

Please send inquiries to cope@research.bell-labs.com.

All rights reserved. No part of this document may be reproduced or copied in
any form or by any means, electronic or mechanical, including photocopying, re-
cording or by information storage and retrieval system, without prior permission
from the author. All reasonable permissions for free non-commercial reproduc-
tion of this work will be considered.

Any product mentioned in this book may be a trademark of its company.

SIGS Books ISBN 1-884842-50-X

Originally printed in the United States of America

Software Patterns v

Software Patterns

1 Software Patterns
2 A Word on Alexander

2 Organization of the Briefing

2 What is a Pattern?
4 The Relationship of Patterns to...

5 Why Do We need to Capture Patterns?
7 The Pattern Form

16 Patterns and Paradigms

17 What Are Pattern Languages?
18 An Example Software Pattern Language

21 Pattern Languages Compared to Pattern Catalogues

21 Pattern Domains

23 Classifying Patterns
23 Three Pattern Levels

26 Alexanderian Scaling
27 Other Scaling Approaches

27 Anti-Patterns
28 Meta- Patterns

28 Patterns and Strategies

29 Pattern Pragmatics
29 The Goal of Patterns

29 What Patterns Can’t Do
30 A Pattern Program

32 Generativity

34 The Pattern Value System
34 The Quality Without a Name
35 Real Stuff

36 Constraints Are Liberating
36 Participative Architecture

37 Dignity for Programmers

vi Software Patterns

38 Aggressive Disregard for Originality
39 The Human Element

39 Aesthetics
42 Interdisciplinary Scope

43 Ethics

45 History

48 References

51 Index

Software Patterns 1

Software Patterns

nterest in patterns has fostered one of the fastest-
growing communities in contemporary software de-
sign. Like many emergent software techniques in re-

cent history structured programming, data abstraction,
and objects they have captured the imagination of many
in the industry. Most of these techniques fail to fulfill the
expectations that propel them to such prominence, partly
because immature ideas are exposed to the market prema-
turely, partly because of opportunism, and partly because a
hopeful (or desperate) market yearns for the one key solu-
tion to all problems. This is a recipe not only for mis-
matched expectations but for misinformation, which in turn
fuels expectations and so on.

I would like to claim that this Briefing is the final word on
patterns: the arbiter of disagreements and splinter perspec-
tives, the definitive word on how excited we should or
should not be about patterns. It is not and cannot be such a
work. The Hillside Group, one loosely affiliated group of
designers who are actively pursuing pattern solutions to in-
dustry problems, is brought together by a vision which it-
self accommodates and celebrates a variety of individual
visions. Dialogue continues on what is and is not a pattern,
on what is and is not a good pattern; this work does not cap
that dialogue but contributes to it. The pattern community
values diversity: there are many things called patterns
that share a small core of techniques, principles, and val-
ues, all of which have proven useful to programmers. There
are, in fact, several pattern communities, some of them
quite decoupled from each other. This paper attempts to
capture the practice and foundations of an (admittedly ill-
defined) mainstream pattern culture.

This work is an apo 1ogia, b oth in the s ense o f apo logy and
of a defensio or defense W hen we discu ss patterns in pub lic,
we bear responsibility for setting reasonable expectations
for patterns. Most new techniques are heralded by expecta-
tions that outstrip what the technique can deliver, and the

danger for patterns to fail into this trap is immense. P attern s
touch critical issues that are central to strategic software
development, and they are important for that reason. But
they are also just documentation, and rely on the insights of
the people who create and use them. It is important to view
patterns as one more tool in the designer s tool kit. Their
success depends on people, and particularly on the most
human aspects of software development and its culture.
This paper accentuates that perspective: we want to accen-
tuate the value of people in design, and to diminish hype.

Tho ug h this Brief in g is th e w or k o f a sin gle autho r, it r ef lects
the work of dozens of individuals. It draws directly on the
contributions of many pattern writers and pattern thinkers,
which takes the material outside my immediate sphere of
thought. In fact, the following pages probably bear more of
my colleagues words than my own; p rimar ily, I pr ov ide the
arrangement and the glue that tie the pieces together.

This is consistent with another important agenda of the
pattern community: we would much rather read, use, and
write patterns than talk or write about patterns. Premature
abstraction is dangerous; it too easily distracts us from the
ends to which we should be aspiring. So, although this
briefing is an early attempt to abstract principles from the
pattern community and explores the frontiers of its value
system, it is grounded in real stuff. Enjoy it as an exposi-
tion of patterns. Focus on the patterns, think about them,
and understand them then read the surrounding analyses
and commentary.

I ve let many commentators challenge and shape my own
thoughts while writing this Briefing. Thanks to Bruce An-
derson, Kent Beck, Stephen Berczuk, Frank Buschmann,
Paul Chisholm, Ward Cunningham, Brandon Goldfedder,
Janel Green, Richard Gabriel, Norm Kerth, Gerard
Meszaros, Hans Rohnert, Doug Schmidt, and Bjarne
Stroustrup for their comments, examples, and suggestions.

I

2 Software Patterns

A Word on Alexander

Patterns have their roots in urban design and building ar-
chitecture in the work of Christopher Alexander, the indis-
putable inspiration for the software patterns groundswell.
Most pattern publications pay him homage; sales of his ar-
chitecture books have soared in the software community.
The vocabulary of software patterns forces, the term pat-
tern itself, pattern languages comes from Alexander.

However, most of the pattern community has let go of lit-
eral interpretations of Alexander. The pragmatics of soft-
ware development seem to dictate iterative development;
Alexander would have us apply patterns in monotonic,
progressive order. All analogies break down somewhere.
While early pattern pioneers looked for Alexanderian∗

analogies under every rock, software pattern literature is
taking increasingly bold departures from Alexanderian
structures and forms. Experience with patterns has borne
out ties to other sources, including earlier work in computer
science on literate programming.

Alexander s greatest legacy to the pattern community is his
vision and value system, but his vision is so foreign to most
software practice that it is often lost in technical dimension
of patterns. One goal of this briefing is to highlight the
pattern value system so it is more broadly understood and
appreciated.

Organization of the Briefing

The paper is organized to start with the central questions of
patterns, moving on to more refined and advanced issues
later on. The sections include:

∗ I suggest a pronunciation of “al-ex-an-der-i-en” to distin-

guish it from the Alexandrian poetic form.

1. What Is a Pattern? This section looks at the prevailing
definitions of patterns, both historically and in con-
temporary software patterns. It also explains why pat-
terns are important.

2 What Are Pattern Languages? Building on Section 1,
this section defines collections of patterns called pat-
tern Languages, the most important application of
patterns to system design.

3. Pattern Domains. This section gives examples of
software disciplines that are using patterns.

4. Classifying Patterns. With hundreds of patterns, how
do designers find the ones they’re looking for? This
section investigates the organizing principles currently
being used for software patterns.

5. Pattern Pragmatics. This section outlines the business
benefits of patterns and how to introduce patterns into
a development culture.

6. Generativity. Generativity is what distinguishes pat-
terns from rules. It is a subtle but important component
of the pattern culture.

7. The Pattern Value System. A value system has arisen
within the pattern community that restores dignity to
programmers. We also recognize several important le-
gal and ethical issues.

8. History. How patterns found their way from Alexan-
der’s work into contemporary software architecture;
the people and the events leading up to today

1. What Is a Pattern?

A pattern is a piece of literature that describes a design
problem and a general solution for the problem in a par-
ticular context. Alexander tells us:

Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.

Software Patterns 3

The pattern is, in short, at the same time a thing, which
happens in the world, and the rule which tells us how
to create that thing, and when we must create it. It is
both a process and a thing; both a description of a
thing which is alive, and a description of the process
which will generate that thing. (Alexander, 1979: p.
247)

I like to relate this definition to dress patterns. I could tell
you how to make a dress by specifying the route of a scis-
sors ˚through a˚ piece of cloth in terms of angles and
lengths of cut. ˚˚Or, I could give you a pattern. Reading the
specification, ˚you would have no idea what was being
built or if ˚you had built the˚ right thing when you were
finished. The pattern foreshadows the product: it is the rule
for making the thing, but it is also, in many respects, the
thing ˚itself. ˚The document ˚that˚ describes˚ a particular˚
decoupling arrangement in object-oriented programs, we
call the Bridge pattern (Gamma et al., 1995); each i n-
stance of that ˚arrangement˚ in the program is ˚also called
a Bridge. Also:

These patterns in our minds are, more or less, mental
images of the patterns in the world: they are abstract
representations of the very morphological rules which
define the patterns in the world.

However, in one respect they are very different. The
patterns in the world merely exist. But the same pat-
terns in our minds are dynamic. They have force. They
are generative. They tell us what to do; they tell us
how we shall, or may, generate them; and they tell us
too, that under certain circumstances, we must create
them.

Each pattern is a rule which describes what you have
to do to generate the entity which it defines. (Alexan-
der, 1979: pp. 181 182)

Above, ˚Alexander˚ refers˚ to˚ patterns as a three-part
rule ; he also calls patterns rules of thumb in Timeless
Way. ˚Patterns are more than just ˚the˚ rule:˚ they encom-

pass the literature that describes the rule and helps it unfold
for our use.

Ward Cunningham adds the following metaphor patterns
are more like recipes than plans:

I like to make the distinction between a plan and a
recipe. A plan can be reverse engineered from a
building but a recipe can t (easily) be reverse engi-
neered from a cake. Our genome is a recipe, not a plan.
Recipes seem to serve better as a schema of complex
adaptive systems. (Personal communication with Ward
Cunningham, 20 February 1996.)

We observe patterns in everyday structures: in buildings, in
vehicle traffic, in organizations of people, and in our soft-
ware. Alexander extracted patterns from building and town
structures of numerous cultures. He believed that by docu-
menting these patterns, he could help people shape the
buildings of their community to support life to its fullest.
Patterns are structures that have evolved over ages of de-
velopment to fulfill cultural needs. They are rules, driven
by principles, that serve human and social needs. Patterns
are also the documentation of these structures. Therefore, a
pattern is both a thing which happens in the world, and
the rule... to create that thing.

Patterns have evolved to a small number of related literary
forms. In one sense, a pattern is just documentation. On the
other hand, they are just documentation in the same sense
that poetry is just literature.

Besides, we believe that human communication is the bot-
tleneck in software development. If the pattern literary
form can help programmers communicate with their cli-
ents, their customers, and with each other, they help fill a
crucial need of contemporary software development.

Patterns are not a complete design method; they capture
important˚ practices˚ of ˚existing methods and practices
˚uncodified by conventional methods. T̊hey are not a
CASE tool. ˚They focus more on the human activities of

4 Software Patterns

design than on transformations that can blindly be auto-
mated. They are not artificial intelligence; they celebrate
and encourage the human intelligence that separates people
from computers.

Example: Here is a synopsis of a typical Alexanderian
pattern, one of the most often cited patterns from his book
A Pattern Language:

A Place to Wait

The process of waiting has inherent conflicts in it.

One on hand, whatever people are waiting for the
doctor, an airplane, a business appointment has
built-in uncertainties, which make it inevitable that
they must spend a long time hanging around, waiting,
doing nothing.

On the other hand, they cannot usually afford to enjoy
this time. Because it is unpredictable, they must hang
at the very door. Since they never know exactly when
their turn will come, they cannot even take a stroll or
sit outside...

Therefore:

In places where people end up waiting, create a situa-
tion which makes the waiting positive. Fuse the wait-
ing with some other activity newspaper, coffee, pool
tables, horseshoes; something which draws people in
who are not simply waiting. And also the opposite:

make a place which can draw a person waiting into a
reverie; quiet; a positive silence. (Alexander et al.,
1977: pp. 707 711)

We also see patterns in the software we write. Patterns are
recurring design problem/solution pairs. The most impor-
tant patterns capture important structures, practices, and
techniques that are key competencies in a given field, but
which are not yet widely known.

1.1. The Relationship of Patterns to...

Patterns are like many other design formalisms but are dis-
tinct from most common formalisms in subtle ways. Panu
Viljamaa explains:

Patterns are related to but different from: paradigms,
idioms, principles, heuristics, architectures, frame-
works, role-models.

You could say that a paradigm is a very abstract pat-
tern, or style of work that can be followed consis-
tently throughout the system. Idiom is a language-
specific typical way of using and combining elemen-
tary building blocks. Principle is an invariant that can
hold globally, or always ; it could be a synonym for
design rule. Heuristics aid decision making, without
claiming absolute goodness for the actions suggested.
Heuristics could be used to choose among multiple
alternative patterns. Architecture refers to the total
structure of an application, possibly described by the
multiple patterns involved. Patterns have been called
micro-architectures. Frameworks refer to collec-
tions of concrete classes working together to accom-
plish a given parameterizable task. Role-models de-
scribe a single coordinated collaboration among mul-
tiple participants (the framework classes can serve in
multiple roles simultaneously). Role-models may be
the closest thing to the formalization of patterns.
(Viljamaa, 1995)

Software Patterns 5

1.2. Why Do We need to Capture Patterns?

Most would agree that the pattern discipline tries to capture
important empirical design information. (The pattern com-
munity is certainly not the first to do this; for a discussion
of past related efforts, see (Gamma et al., 1995: p. 357)
Patterns have a different emphasis than most reuse pro-
grams or design catalogues: they tend to capture broader
abstractions. In the spirit of Alexander s patterns, they
make up for lapses in the memory of the contemporary
software design culture, and they capture structure not im-
mediately apparent from the code or from most system de-
sign documents.

Patterns capture obscure but important practice. Pat-
terns capture established practices that remain obscure in
the broad practice of a given domain. The intuitiveness
of patterns is paradoxical. Many patterns have their roots
in the work of early adaptors of a new technology or the
first architects of a system. Many of these patterns attack
problems in subtle ways, which makes it difficult to cast
them in the framework of the predominate constructs of
the technology or system. For example, in C++, refer-
ence counting would be a pattern, while the specific lan-
guage features used to implement it are just that, lan-
guage features, independent of reference counting per
se. Bjarne Stroustrup foresaw the need for reference
counting in C++. Many C++ language features such
as constructors and destructors (which serve other needs
as well) and overloaded assignment anticipate this
need. But when people first learn C++, they learn it in
terms of its language parts (classes, procedures, and ob-
jects) or in terms of object-oriented design principles
that lead to a good class partitioning.

Patterns work at many levels of detail. We tend to think of
reference counting as a detail, but programmers who don t
know how to implement it properly will never be viable
C++ programmers. Though reference counting is a low-
level construct, we can use patterns to capture its key de-
sign principles in an abstract form. A pattern is abstract be-

cause it approaches the problem at a suitably general level,
although the solution may entail details. A good solution
has enough detail that the designer knows what to do, but it
is general enough to address a broad context.

Patterns capture hidden structure. Patterns cur across the
predominant partitionings of the subject area. Many Alex-
anderian patterns talk about the relationship between streets
and houses (Entrance Transition), between houses and
houses (Row Houses), between rooms and rooms (Varied
Ceiling Heights), or between a room and its interfaces
(Light on Two Sides of Every Room). They rarely focus on
the properties of a single architectural artifact alone. Good
software patterns are the same way: they address system
problems and relationships that are obscured by a perspec-
tive from inside any of the parts. Early object-oriented de-
sign techniques magnified this myopic view of systems,
and contemporary methods aren t much better. Patterns
complement object-oriented design methods to capture the
important constructs that cur across objects.

These deep components of architecture and design are
larger than any architectural building blocks such as proce-
dures or objects. Such constructs are often obscure to the
day-to-day practitioner because the building materi-
als objects, modules, and procedures don t highlight
them. Some of these patterns are intricate and perhaps de-
tailed like reference counting or the structure of stairs in
castle towers yet such patterns permeate the structures
they help create. The architect put such structures in place
to fulfill a need, but such structures and the rationale be-
hind them are soon lost to history. Patterns capture these
structures and decisions.

Again, we can draw on Alexander:

Design is often thought of as a process of synthesis, a
process of putting together things, a process of combi-
nation.

6 Software Patterns

According to this view, a whole is created by putting
together parts. The parts come first: and the form of
the whole comes second.

But it is impossible to form anything which has the
character of nature by adding preformed parts.

When parts are modular and made before the whole,
by definition then, they are identical, and it is impossi-
ble for every part to be unique, according to its posi-
tion in the whole. (Alexander, 1979: p. 368)

Later in the same work:

In order for the building to be alive, its construction
details must be unique and fitted to their individual
circumstances as carefully as the larger parts The
details of a building cannot be made alive when they
are made from modular parts. (Alexander, 1979: pp.
459 460)

The Mediator pattern talks about the relationship between
two objects, which often cuts across the intuitive object
system partitioning:

Name

Mediator

Intent

Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it
lets you vary their interaction independently.

Motivation

Object-oriented design encourages the distribution of
behavior among objects. Such distribution can result in
an object structure with many connections between
objects; in the worst case, every object ends up know-
ing about every other.

Though partitioning a system into many objects gener-
ally enhances reusability, proliferating interconnec-

tions tend to reduce it again. Lots of interconnections
make it less likely that an object can work without the
support of others the system acts as though it were
monolithic. Moreover, it can be difficult to change the
system s behavior in any significant way, since be-
havior is distributed among many objects. As a result,
you may be forced to define subclasses to customize
the system s behavior.

You can avoid these problems by encapsulating col-
lective behavior in a separate mediator object. A me-
diator is responsible for controlling and coordinating
the interactions of a group of objects. The mediator
serves as an intermediary that keeps objects in the
group from referring to each other explicitly. The ob-
jects only know the mediator, thereby reducing the
number of interconnections.

Consequences

1. It limits subclassing...

2. It decouples colleagues...

3. It simplifies object protocols...

4. It abstracts how objects cooperate...

5. It centralizes control

(From Gamma et al., 1995: pp. 273 277)

ConcreteMediator ConcreteColleague

Mediator Colleague

ConcreteMediator

Software Patterns 7

1.3. The Pattern Form

Patterns are a literary form, much as sonnets or novels or
short stories are literary forms. The form serves a purpose:
to introduce the reader to a problem, to describe the context
where the problem might arise, to analyze the problem, and
to present and elucidate a solution.

Many documents classify as patterns within these guid e-
lines, and the question of form is usually wrapped up with
the definition of patterns. The prevailing definition: a solu-
tion to a problem in a context evokes elements of the form.
There is large variety of established pattern forms. The
following section is a survey of forms in common use to-
day. Section 1.3.1 describes sections of the form in more
detail.

1.3.1. Sections of the Form
We can write a good pattern by ensuring the goals of each
section are met. Writing a great pattern is more holistic
than that. The pattern must work as a seamless piece of lit-
erature, but the sections and their attributes are worth in-
vestigation by the pattern student and pattern critic alike.

This section draws on ideas from a wide variety of forms in
common use. It combines background and tips for each of
the pattern sections. These sections also help put the pattern
components in perspective. The solution is obviously the
heart of the pattern, as Alexander said, but the sketch and
the forces are unusually important, too. The common (or
perhaps minimal) sections are:

• Name
• Intent
• Problem
• Context
• Forces
• Solution
• Sketch
• Resulting Context

Name
Names are important in many cultures, and have always
loomed important in programming. A good object-oriented
designer understands that it is important to choose good
class names. Pattern names are important for at least two
reasons. First, they are one of the first things a designer en-
counters when seeking a solution. If the name encodes the
pattern s meaning well, the designer can more easily find a
suitable pattern in an unfamiliar pattern language. For ex-
ample, Ambassador or Remote Proxy evoke powerful
images of how two objects interact, and implementation
descriptions are almost superfluous.

Second, pattern names quickly become part of the design
team vocabulary. Short, well-chosen names aid communi-
cation between developers. For example, Riding Over
Transients (page 26) is a general pattern that deals with
transient events: if the designer is looking for a solution to
transient errors, the name gets the designer s attention and
encourages further reading. Half-Object Plus Protocol,
Window Per Task, and Exceptional Value are other de-
scriptive pattern names.

Many patterns take clever names that recall obscure analo-
gies or historically relevant folklore. We find pattern names
and pattern language names like Leaky Bucket Counter,
Fool Me Once, and Caterpillar s Fate that convey deep
meaning once explained. Perhaps because these names
have strong cultural ties, they are great communication en-
ablers, but such names are a liability to novice designers
who are unfamiliar with the culture. Novices seek names
that describe the problem or its solution.

Aliases can help address this problem. Leaky Bucket
Counter might have an alias of Riding over Event Tran-
sients: the first name evokes a powerful analogy for those
who know the pattern, and the second name serves the
novice solution seeker.

Should a pattern title be a noun, a verb, a noun phrase, or a
verb phrase? Should it characterize the problem or the so-
lution? We find patterns that follow each of these and then

8 Software Patterns

some. Alexander s pattern names are predominately nouns
or noun phrases, with minor exceptions, but we find many
variations that work well. Here are a few noun phrases:

• A Place to Wait (Alexander, 1977: pp. 707—711).
Describes the context for the solution.

• Capacity Bottlenecks (Meszaros, 1996). Describes
the problem.

• Bridge (Gamma et al., 1995: pp. 151—153). De-
scribes the solution.

• Chicken and Egg (see page 22). Describes the
problem.

• Gatekeeper (Coplien, 1995a). Describes a key
component of the solution.

Here are so me verb phrases:

• Fool Me Once and Minimize Human Intervention
(Adams, et al., 1996). Clever names for the solu-
tions.

• Developing in Pairs (Coplien, 1995a). Describes a
solution.

• Reception Welcomes You (Alexander, 1977: pp.
705—706). A rare Alexanderian title with a
prominent verb; it describes a solution.

• Identify the Nouns (DeBruler, 1995). Describes
the problem.

Intent, Question
The intent is a phrase or sentence that summarizes what the
pattern does, describing the design issue or problem it ad-
dresses. As a designer scans patterns for a solution to a
specific problem, the intents provide a road map into
promising patterns and around irrelevant ones.

The intent often is not part of the pattern body per se, but it
may be used to annotate the pattern index. That makes it
easier for designers to quickly find a pattern that meets
their need.

The Intent section was first used in the Gang of Four
(GOF) pattern form (page 12) but has a direct analogy in
the question that appears an the beginning of many pattern
forms (e.g., the questions at the beginning of Kent Beck s
patterns written in the Portland Form, page 13).

Problem
The problem section describes the problem to be solved. A
concise problem statement helps the problem solver decide
whether to read further, and it often serves as the primary
index for pattern selection.

Some pattern forms reduce the problem to a single question
or a summary formulation of the problem; many of the
patterns of the Coplien form (page 14) have this feature. In
other forms, the problem statement is a small essay that
motivates or illustrates a need. For example, Alexanderian
form (page 12) combines the forces into the problem sec-
tion.

Context
We make the context explicit in a pattern. Context includes
a history of patterns that have been applied before the cur-
rent pattern was considered. It also specifies size, scope,
market, programming language, or anything else that, if
changed, would invalidate the pattern.

Pattern context is crucial to the success of a pattern lan-
guage, a collection of patterns that work together to solve
system-level problems (see Section 2). One can think of a
pattern as balancing forces for a problem in one context,
leaving a new context. Contexts weave patterns together
into a pattern language.

Software Patterns 9

It is difficult to write a good context. The context section
matures with experience: as designers find special situa-
tions that invalidate the pattern, the context grows to be-
come more restrictive. Sometimes, we find opportunities to
grow the pattern into new contexts, and capture that experi-
ence in the context section.

As patterns evolve, the pattern writer should take care to
maintain a lucid context section. Domain vocabularies
evolve with increased understanding, and one might be
able to make the Context more precise only at the expense
of accessibility.

Forces
Patterns aren t rules we follow blindly; we should under-
stand them and tailor them to our needs. If we understand
the forces in a pattern, then we understand the problem
(because we understand the trade-offs) and the solution
(because we know how it balances the forces), and we can
intuit much of the rationale. For this reason, forces are the
focus of a pattern. Alexander s early writings emphasize
that forces are crucial to understanding systems:

No one will become a better designer by... following
any method blindly if you try to understand the idea
that you can create abstract patterns by studying the
implication of limited systems of forces, and can create
new forms by free combination of these patterns and
realize that this will only work if the patterns which
you define deal with systems of forces whose internal
interaction is very dense, and whose interaction with
the other forces in the world is very weak then, in the
process of trying to create such diagrams or patterns
for yourself, you will reach the central idea of which
this book is all about. (Alexander, 1974, Preface to the
Paperback Edition)

From a practical perspective, forces help the designer un-
derstand how to apply a pattern effectively. A single pat-
tern can be applied a million times without ever doing quite

the same thing twice. The key to these distinctions lies in
the forces.

The term force appeals to the architectural heritage of
patterns. A building architect designs arches and walls to
balance the forces of gravity with the forces from adjoin-
ing structures, so the structure is balanced and centered.
Balanced forces support a firm, structurally sound system.
In software, we use the term force figuratively because
there are rarely physical forces we must balance. Even
Alexander used the force in a figurative sense, particularly
as he was concerned about balancing the forces of human
aesthetics and comfort with the physical structure of a
town or building. Great architects can balance all of these
(i.e., they don t optimize aesthetics at the expense of im-
plementation feasibility, utility, or cost a practicality
that seems to be lost in many modern architecture
schools). As patterns mature, they move past purely tech-
nical and mechanical forces and take human forces into
account.

The forces should amplify and illustrate the problem state-
ment because it is through the forces that one fully appreci-
ates the problem. In Alexanderian form (page 12), the
forces are part of the problem statement proper not a
separate section. Other forms separate out the forces to help
point the reader to the exposition of trade-offs.

Forces determine why a problem is difficult. If a designer
understands the forces of the pattern, the soundness of the
solution becomes obvious. Describing what we under-
stand not to work points the way to what works. Alexan-
der says:

We should find it almost impossible to charac-
terize a house which fits its context. Yet it is the
easiest thing in the world to name the specific
kinds of misfit which prevent good fit. A kitchen
which is hard to clean, no place to park my car,
the child playing where it can be run down by
someone else s car, rainwater coming in, over-

10 Software Patterns

crowding and lack of privacy, the eye-level grill
which spits hot fat right into my eye, the gold
plastic doorknob which deceives my expecta-
tions, and the front door I cannot find, are all
misfits between the house and the lives and hab-
its it is meant to fit. These misfits are the forces
which must shape it, and there is no mistaking
them. Because they are expressed in negative
form they are specific, and tangible enough to
talk about. (Alexander, 1974: pp. 22 23)

Consider this pattern from Gerard Meszaros, particularly
the deliciously disturbing forces:

Leaky Bucket of Credits

Problem:

How can one processor know whether another proces-
sor is capable of handling more work?

Forces:

For a peripheral to be able to reject new work when the
system is overloaded, it must be able to recognize
when the system is overloaded. But having the bottle-
neck processor take up valuable realtime cycles to in-
form the (potentially large number of) peripherals
would further reduce its capacity. And what happens if
it gets so bogged down that it can t send out the Stop
sending me work! me ssages?

Solution:

The bottleneck processor tells the peripherals when it
is capable of accepting more work. It does so by
sending credits to the peripherals. Each peripheral
tracks a leaky bucket of credits received from the bot-
tleneck processor [(BP)]. As requests are sent to the
BP, or simply as time passes, the bucket leaks until it
is empty. When the system is not at capacity, the
bucket is continuously refilled by new credits sent
from the BP; however, if the system is at capacity, the
BP will not send credits and the peripherals will hold
back new work... (Meszaros, 1996)

The forces, taken alone, inform the reader that this is a hard
problem perhaps an intractable problem! The forces tug
the design in two directions, helping our thought process to
explore all the options and to consider the dark corners of
the design. The solution resolves the forces, but the solu-
tion means more for the forces having set it up.

Solution
A good solution has enough detail so the designer knows
what to do, but it is general enough to address a broad
context.

The solution should solve the problem stated in the prob-
lem section. Some patterns provide only partial solutions
but open a path to other patterns that balance unresolved
forces.

If a pattern is literature, it is like a play in that the solution
section should provide catharsis. The context introduces the
characters and the setting ; the Forces provide a plot,
and the Solution provides a resolution of the tension built
up in the conflict of the Forces. This form helps emphasize
the importance of the solution.

Sketch
Alexander maintained that the sketch is the essence of a
pattern. In Notes on the Synthesis of Form, one of his earli-
est works, he notes:

These diagrams, which, in my more recent work, I
have been calling patterns, are the key to the process of
creating form.., most of the power of what I had writ-
ten lay in the power of these diagrams...

Poincar once said: Sociologists discuss sociological
methods; physicists discuss physics. I love this state-
ment. Study of method by itself is always barren, and
people who have treated [Notes on Synthesis] as if it
were a book about design method have almost al-
ways missed the point of the diagrams, and their great
importance, because they have been obsessed with the

Software Patterns 11

details of the method I propose for getting an the dia-
grams. (Alexander, 1974: p. ii)

And in The Timeless Way of Building, he says, simply:

If you can t draw a diagram of it, it isn t a pattern. (Al-
exander, 1979: p. 267)

What do we sketch in a software pattern? Anything we
think helps the designer understand the relationship be-
tween the parts. The sketch usually conveys structure. The
Design Pattern book (Gamma et al., 1995) uses OMT dia-
grams (a widely accepted software design notation) to pre-
sent example solution structures for each of its patterns.
Interaction diagrams that illustrate event ordering or other
dynamics are equally useful.

Classical architects did not draw on abstract notions of art
for its own sake, but limited themselves to familiar struc-
tures that served the culture well. In that sense, architecture
is unlike painting. And the builders of comfortable folk ar-
chitecture homes usually do not follow a prescribed grand
plan, but assemble mud, thatch, stone, or brick to build the
foundation first, the walls and doorway second, the win-
dows next, then the roof, and finally the interior walls. Pre-
ordaining all these structures makes it impossible for the
builder to manage the interplay between a growing house
and its environment: light, wind, and the shadows of
neighboring structures. Even if one can foresee such prob-
lems, the initial two-dimensional drawings can never cap-
ture the magic (or funkiness, as the case may be) of the
completed structure.

Software specifications and architecture documents are
analogous to construction blueprints. Consider Alberti s
Law:

Here is another liability: beautiful drawings can be-
come ends in themselves. Often, if the drawing de-
ceives, it is not only the viewer who is enchanted but
also the maker, who is the victim of his own artifice.
Alberti understood this danger and pointed out that ar-

chitects should not try to imitate painters and produce
lifelike drawings. The purpose of architectural draw-
ings, according to him, was merely to illustrate the re-
lationship of the various parts... Alberti understood, as
many architects of today do nor, that the rules of
drawing and the rules of building are not one and the
same, and mastery of the former does not ensure suc-
cess in the latter. (Rybczynski, 1989: p. 121)

Alexander says much the same thing:

It is essential, therefore, that the builder build only
from rough drawings: and that he carry out the detailed
patterns from the drawings according to the processes
given by the pattern language in his mind. (Alexander,
1979: p. 463)

This is why the sketch is called a sketch and not a
graphical specification. Most readers interpret refined
diagrams too literally. There is much to be said for hand-
drawn diagrams that abhor right angles and straight lines
(see, for example, the sketches of Detached Counted Han-
dle/Body idiom on page 23). Such a rough solution encour-
ages the designer to craft or engineer the solution to the
situation at hand.

Resulting Context
The Resulting Context is the wrap-up of the pattern. It tells
us:

• which forces were resolved
• which new problems may arise because of this

pattern
• what related patterns may come next

Each pattern is designed to transform a system in one con-
text to a new context. The Resulting Context of one pattern
is input to the patterns that follow. Contexts tie related
patterns together into a pattern language (Section 2).

12 Software Patterns

1.3.2. Common Forms
A pattern is a literary form. We have seen several forms
emerge and evolve over the past four years. This section
summarizes the most popular pattern forms, drawing di-
rectly on their originators insights.

Alexanderian Form
Alexanderian form, from Christopher Alexander s work, is
the original pattern form. The sections of an Alexa n-
derian pattern are not strongly delimited. The major syn-
tactic structure is a Therefore immediately preceding the
solution. Other elements of the form are usually present: a
clear statement of the problem, a discussion of forces, the
solution, and a rationale.

Each Alexanderian pattern usually follows an introductory
paragraph that enumerates the patterns that must already
have been applied to make the ensuing pattern meaningful.
The pattern itself starts with a name and a confidence des-
ignation of zero, one, or two stars. Patterns with two stars
are the ones in which the authors have the most confidence
because they have empirical foundations. Patterns with
fewer stars may have strong social significance but are
more speculative.

Here is Alexander s own description of his form:

For convenience and clarity, each pattern has the same
format. First, there is a picture, which shows an ar-
chetypal example of that pattern. Second, after the
picture, each pattern has an introductory paragraph,
which sets the context for the pattern, by explaining
how it helps to complete certain larger patterns. Then
there are three diamonds to mark the beginning of the
problem. After the diamonds there is a headline, in
bold type. This headline gives the essence of the
problem in one or two sentences. After the headline
comes the body of the problem. This is the longest
section. In describes the empirical background of the
pattern, the evidence for its validity, the range of dif-
ferent ways the pattern can be manifested in a build-

ing, and so on. Then, again in bold type, like the head-
line, is the solution the heart of the pattern which
describes the field of physical and social relationships
which are required to solve the stated problem, in the
stated context. This solution is always stated in the
form of an instruction so that you know exactly what
you need to do, to build the pattern. Then, after the
solution, there is a diagram, which shows the solution
in the form of a diagram, with labels to indicate its
main components.

After the diagram, another three diamonds, to show
that the main body of the pattern is finished. And fi-
nally, after the diamonds there is a paragraph which
ties the pattern to all those smaller patterns in the lan-
guage, which are needed to complete this pattern, to
embellish it, to fill it out. (Alexander et al., 1977: pp.
x xi)

Why does Alexander adopt this form? He goes on:

There are two essential purposes behind this format.
First, to present each pattern connected to other pat-
terns, so that you grasp the collection of all 253 pat-
terns as a whole, as a language, within which you can
create an infinite variety of combinations. Second, to
present the problem and solution of each pattern in
such a way that you can judge it for yourself, and
modify it, without losing the essence that is central to
it. (Alexander et al., 1977: p. xi)

The Detached Counted Handle/Body idiom (page 23) and
Simply Understood Code (page 40) are examples of soft-
ware patterns written in Alexanderian form.

The GOF Form
The GOF (Gang of Four) Form was established in De-
sign Patterns (Gamma et al., 1995). It has the following
sections:

Pattern Name and Classification: The pattern s name
conveys the essence of the pattern succinctly. A good

Software Patterns 13

name is vital, because it will become part of your de-
sign vocabulary...

Intent: A shorn statement that answers the following
questions: What does the design pattern do? What is its
rationale and intent? What particular design issue or
problem does it address?

Also Known As: Other well-known names for the
pattern, if any.

Motivation: A scenario that illustrates a design prob-
lem and how the class and object structures in the pat-
tern solve the problem. The scenario will help you un-
derstand the more abstract description of the pattern
that follows.

Applicability: What are the situations in which the de-
sign pattern can be applied? What are examples of
poor designs that the pattern can address? How can
you recognize these situations?

Structure: A graphical representation of the classes in
the pattern using a notation based on the Object Mod-
eling Technique (OMT) [Rumbaugh et al., 19911. We
also use interaction diagrams (Jacobson et al., 1992;
Booch, 1994) to illustrate sequences of requests and
collaborations between objects...

Participants: The classes and /or objects participating
in the design pattern and their responsibilities.

Collaborations: How the participants collaborate to
carry out their responsibilities.

Consequences: How does the pattern support its ob-
jectives? What are the trade-offs and results of using
the pattern? What aspect of system structure does it let
you vary independently?

Implementation: What pitfalls, hints, or techniques
should you be aware of when implementing the pat-
tern? Are there language-specific issues?

Sample Code: Code fragments that illustrate how you
might implement the pattern in C++ or Smalltalk.

Known Uses: Examples of the pattern found in real
systems. We include at least two examples from dif-
ferent domains.

Related Patterns: What design patterns are closely re-
lated to this one? What are the important differences?
With which other patterns should this one be used?
(Gamma et al., 1995: pp. 6 7)

The GOF pattern form is tuned for object-oriented software
designs. The Mediator pattern (page 6) and the Bridge pat-
tern (page 15) are examples of GOF patterns.

The Portland Form
Ward Cunningham maintains an on-line repository of pat-
terns called the Portland Pattern Repository. Many of the
patterns found in that forum follow the Portland Form, of
which Cunningham writes:

The repository prefers patterns written in the Portland
Form, a form first adopted by three authors submitting
papers to the Pattern Languages of Programs confer-
ence, PLoP 94. (All three were from Portland, Ore-
gon, hence the name.) The form has been described as
narrative, as opposed to the more outline like form of
keyword templates first used by Peter Coad and made
popular by Erich Gamma et al. The form is actually a
fairly direct emulation of Alexander s form with some
simplification in typesetting. We hope that the hyper-
text aspects of the repository will more than make up
for the omissions and simplifications of the Portland
Form.

Language Document

Each document in the Portland Form contains a system
of patterns that work together. Alexander calls such
systems languages since he believes the human mind
assembles the words of a natural language, namely,
without much conscious thought. The Portland Form
collects and connects patterns so that they will be
studied and understood as a whole. Although we be-
lieve all patterns will be ultimately linked, we cur-

14 Software Patterns

rently give authors the responsibility of defining a
suitable whole consistent with their own knowledge
and their readers ability to absorb. This unit we call
both a language and a document...

Pattern Paragraphs

Each pattern in the Portland Form makes a statement
that goes something like: such and so forces create
this or that problem, therefore, build a thing-a-ma-jig
to deal with them. The pattern takes its name from the
thing-a-ma-jig, the solution. Each pattern in the Port-
land Form also places itself and the forces that create it
within the context of other forces, both stronger and
weaker, and the solutions they require. A wise de-
signer resolves the stronger forces first, then goes on to
address weaker ones. Patterns capture this ordering by
citing stronger and weaker patterns in opening and
closing paragraphs. The total paragraph structure ends
up looking like:

• Having done so and so you now face this prob-
lem...

• Here is why the problem exists and what forces
must be resolved...

Therefore:

• Make something along the following lines. I’ll
give you the help I can...

• Now you are ready to move on to one of the fol-
lowing problems...

Summary Screen

Long pattern languages find groups of patterns work-
ing around similar ideas. Portland Form introduces
such groups with a summary section. This section ex-
plains the general problem under consideration and
names the patterns that address it. (Source: The Port-
land Pattern Repository, http:// c2.com/ppr/)

The CHECKS patterns (page 41) are examples of the
Portland form.

The Coplien Form
The Coplien form also reflects the basic elements found in
the Alexanderian form. It delineates pattern sections with
section headings and includes:

• The pattern name: The Coplien form commonly
uses nouns for pattern names, but short verb
phrases can also be used. This follows from the
Alexanderian form.

• The problem: The problem is often stated as a
question or design challenge. This is analogous to
the Alexanderian section that follows the first
three diamonds.

• The context: A description of the context in
which the problem might arise, and to which the
solution applies. This is like Alexander’s intro-
ductory paragraph that sets context.

• The forces: The forces describe pattern design
trade-offs; what pulls the problem in different di-
rections, toward different solutions? This is like
Alexander’s in-depth description of the problem,
the longest part of the pattern.

• The solution: The solution explains how to solve
the problem, just as in the emboldened section of
an Alexanderian pattern. A sketch may accom-
pany the solution—analogous to the second sketch
of Alexander’s patterns.

• A rationale: Why does this pattern work? What is
the history behind the pattern? We extract this so
it doesn’t “clutter” the solution. As a section, it
draws attention to the importance of principles be-
hind a pattern; it is a source of learning, rather
than action.

• Resulting context: This tells which forces the
pattern resolves and which forces remain unre-
solved by the pattern, and it points to more pat-
terns that might be the next ones to consider. This
is like the Alexanderian section following the sec-
ond set of three diamonds.

Software Patterns 15

 The Counted Body Idiom (Section 1.3.3) is in Coplien
form.

1.3.3. Relationships between Parts of a Pattern
A pattern s solution section balances its problem section.
However, several patterns may address the same problem,
and a single solution may address multiple problems.

As an example, consider the following idiom (a low-level
pattern) called Counted Body:

Name: Counted Body Idiom

Problem: Simulating Smalltalk assignment semantics
in C++

Context: A design has been transformed into
body/handle C++ class pairs.

Forces:

Assignment in C++ is defined recursively as member-
by-member assignment with copying as the termina-
tion of the recursion; it would be more efficient and
more in the spirit of Smalltalk if copying were rebind-
ing.

Deep copying of bodies is expensive.

Copying can be avoided by using pointers and refer-
ences, but these leave the problem of who is responsi-
ble for cleaning up the object, and they leave a user-
visible distinction between built-in types and user-
defined types.

Sharing bodies on assignment is semantically incorrect
if the shared body is modified through one of the han-
dles.

Solution: A reference count is added to the body class
to facilitate memory management.

Memory management is added to the handle class,
particularly to its implementation of initialization, as-
signment, copying, and destruction.

It is incumbent on any operation that modifies the state
of the body to break the sharing of the body by making
its own copy. It decrements the reference count of the
original body.

Forces Resolved:

Gratuitous copying is avoided, leading to a more effi-
cient implementation.

Sharing is broken when the body state is modified
through any handle.

Sharing is preserved in the more common case of pa-
rameter passing, etc.

Special pointer and reference types are avoided.
Smalltalk semantics are approximated; garbage collec-
tion is driven off of this model.

Design Rationale: Reference counting is efficient and
spreads the overhead across the execution of real-time
programs.

Compare this pattern with the pattern Detached Counted
Handle/Body Idiom (see page 23). Both solve the same
problem: memory management. Both solve the problem by
separating the implementation from the interface. Why are
they different patterns? Each has a different context, and
we find these contexts elucidated in the forces. In D e-
tached Counted Handle/Body, we find that the class to be
managed is a library class, to which we cannot add a refer-
ence count member. In its resulting context, we find con-
cerns about memory overhead and fragmentation less of a
problem in the ordinary Handle/Body idiom (which is like
the Counted Handle/Body idiom, but without reference
counting).

Now compare Gamma et al. s Bridge pattern (Gamma et
al., 1995):

Intent

Decouple an abstraction from its implementation so
that the two can vary independently.

16 Software Patterns

Also Known As

Handle/Body

Motivation

When an abstraction can have one of several possible
implementations, the usual way to accommodate them
is to use inheritance. An abstract class defines the in-
terface to the abstraction, and concrete subclasses im-
plement it in different ways. But this approach isn t
always flexible enough. Inheritance binds an imple-
mentation to the abstraction permanently, which makes
it difficult to modify, extend, and reuse abstractions
and implementations independently.

The Bridge pattern addresses these problems by pun-
ning the ... abstraction and its implementation in sepa-
rate class hierarchies.

Applicability

Use the Bridge pattern when

• You want to avoid a permanent binding between
an abstraction and its implementation...

• Both the abstractions and their implementations
should be extensible by subclassing...

• Changes in the implementation of an abstraction
should have no impact on clients; that is, their
code should not have to be recompiled.

• (C++) you want to hide the implementation of an
abstraction completely from clients...

• You have a proliferation of classes... Such a class
hierarchy indicates the need for splitting an object
into two parts...

• You want to share an implementation among
multiple objects (perhaps using reference count-
ing), and this fact should be hidden from the cli-
ent. A simple example is Coplien’s String class
[Coplien, 1992], in which multiple objects can
share the same string representation (StringRep).
(Gamma et al., 1995: pp. 151—153)

These patterns are clearly related. However, the Bridge
pattern describes the problem from the perspective of the

solution: the need to separate implementation from inter-
face; reference counting is at the end of the Applicability
list.

The problem solved by the Counted Body idiom is to
simulate Smalltalk assignment semantics in C++. The De-
tached Counted Handle/Body Idiom solves a similar prob-
lem: it gives classes the same reasonable behavior we come
to expect from built-in types. In many contexts, the solu-
tion for that problem is to separate interface from imple-
mentation, which is the key problem solved by Bridge.

Many of these subtleties are germane to the imprecision of
natural language and the complexity of design. Hopefully,
future research will provide better foundations for a lin -
guistics of patterns that helps regularize the relationship
between the problem and solution space.

1.4. Patterns and Paradigms

One of the most important challenges of system design is
dealing with complexity. We attack complexity with ab-
straction. Much of design concerns itself with finding the
right abstractions in a system, partitioning the system
into mind-size, manageable chunks.

To divide a system into parts, we usually use a consistent
set of guidelines, principles, rules, and tools. A paradigm is
a world view that embraces a consistent set of rules and
tools that we use to partition a system into manageable ab-
stractions. It gives us broad organizing principles that help
us structure systems from a very broad understanding of
their functionality and markets in the possible absence of
domain experience or expertise.

There are holes in the broad space of design that most
paradigms and their design methods leave unfilled. Great
designers know how to fill those holes by drawing on their
intuition or on past experience.

Software Patterns 17

Those are the kind of design insights we want to capture in
patterns: design structures that can t easily be regularized
in a method.

As technology progresses, today s patterns become tomor-
row s paradigms; tomorrow s paradigms become next
week s programming language. The design tricks known to
early compiler designers are now regularized in tools like
yacc and bison. Some patterns seem to defy regularization
even over time. Many of the patterns of classic telecommu-
nication are still part of the design folklore. There is a cost
associated with keeping such knowledge locked up as
folklore: it makes it difficult to (re)-staff and maintain leg-
acy systems. Patterns strive to bring such knowledge into
the open.

2. What Are Pattern Languages?

A pattern language is a collection of patterns that build on
each other to generate a system. A pattern in isolation
solves an isolated design problem; a pattern language
builds a system. It is through pattern languages that pat-
terns achieve their fullest power.

The term pattern language comes from building architec-
ture and has been popularized by Alexander. We can com-
pare a pattern language to natural language. English can
generate all meaningful English sentences, and a pattern
language that deals with data form input errors (like the
CHECKS pattern language; see page 41) can generate the
error-handling architecture for all human interfaces that fin
the context.

This sense of the word language is not commonly used in
the computer field. A pattern language should not be con-
fused with a programming language. A pattern language is
a piece of literature that describes an architecture, a design,
a framework, or other structure. It has structure, but not the
same level of formal structure that one finds in program-
ming languages. The term pattern language has been the

source of some confusion because of this, leading some
authors to instead use the term pattern system (Busch -
mann & Meunier, 1995).

Pattern languages are closely related to Parnas notion of a
software family (Parnas, 1976). A software family com-
prises many members related to each other by their com-
monality, distinguishable from each other by their variabil-
ity. Think of a pattern language as the collection of rules
that build all members of a family and only members of a
family. Cape Cod Houses come from a pattern language;
Alexander presents pattern languages for farmhouses in the
Bernese Oberland, for southern Italian stone houses, and
for other genres (Alexander, 1979: p. 185).

A pattern language is not just a decision tree of patterns.
This is partly because the patterns of a pattern language
form a directed acyclic graph (DAG), not a hierarchy. The
number of distinct paths through a pattern language is very
large.

Pattern languages place individual patterns in context. Al-
exander says:

Each pattern then, depends both on the smaller pat-
terns it contains, and on the larger patterns within
which it is contained...

And it is the network of these connections between
patterns which creates the language.

In this network, the links between the patterns are al-
most as much a part of the language as the patterns
themselves.

It is, indeed, the structure of the network which makes
sense of individual patterns, because it anchors them,
and helps make them complete.

18 Software Patterns

But even when I have the patterns connected to one
another, in a network, so that they form a language,
how do I know if the language is a good one?

The language is a good one, capable of making some-
thing whole, when it is morphologically and function-
ally complete.

The language is morphologically complete when I can
visualize the kind of buildings which it generates very
concretely

And the language is functionally complete, when the
system of patterns it defines is fully capable of allow-
ing all its inner forces to resolve themselves. (Alexan-
der, 1979, pp. 312 317)

2.1. An Example Software Pattern Language

AT&T has assembled a large pattern language that captures
expert practices from one of its key business domains. That

large language can be broken down into many self-
consistent languages of more modest scope. One such lan-
guage was published by Adams, et al., (1996); it includes
the patterns Leaky Bucket Counter and Riding Over Tran-
sients (page 26) as small patterns that complement the pat-
tern Minimize Human Intervention. The structure of the
pattern language looks like the following figure (adopted
from Adams, et al., 1996):

We ll examine the two patterns in the lower left of the dia-
gram in more detail later (see page 26). Let s look at Five
Minutes of No Escalation Messages:

Name: Five Minutes of No Escalation Messages

Problem: Rolling in console messages: the human-
machine interface is saturated with error reports that
may be rolling off the screen or consuming resources
just for the intense displaying activity.

Context: Any continuous-running, fault-tolerant sys-
tem with escalation, where transient conditions may be
present.

Forces: There is no sense in wasting time or in reduc-
ing the level of service trying to solve a problem that
will go away by itself.

Many problems work themselves out given time.

MINIMIZE
HUMAN INTERVENTION

FIVE MINUTES OF
NO ESCALATION

MESSAGES PEOPLE KNOW
BEST

SICO
FIRST AND
ALWAYS

FOOL ME
ONCE

RIDING
OVER TRANSIENTS

LEAKY
BUCKET COUNTERS

TRY
ALL HARDWARE

COMBOS

Software Patterns 19

You don t want the switch using all of its resources
displaying messages.

You don t want to panic the user by making them
think the switch is out of control (Minimize Human
Intervention).

The only user action related to the escalation mes-
sages may be inappropriate to the goal of preserving
system sanity.

There are other computer systems monitoring the ac-
tions taken. These systems can deal with a great vol-
ume of messages.

Solution: When taking the first action down the sce-
nario that could lead to an excess number of mes-
sages, display a message. Periodically display an up-
date message. If the abnormal condition ends, display
a message that everything is back to normal. Do not
display a message for every change in state (Riding
Over Transients).

Continuously communicate status and actions taken
to the downstream monitoring computer system
throughout this period.

For example, when the 4ESSTM Switch enters the
first level of system overload, post a user message.
Post no more messages for 5 minutes, even if there is
additional escalation. At the end of 5 minutes, display
a status message indicating the current status. When
the condition clears, display an appropriate message.

Resulting Context: The system operator won t panic
from seeing too many messages. Machine-to-
machine messages and measurements will keep a re-
cord for later evaluation as well as keeping the sys-
tem actions visible to people who can deal with them.
In the 4ESS overload example, measurement count-
ers continue to track overload dynamics; some down-
stream support systems track these counters.

Other messages, not related to the escalating situation
that is producing too many messages, will be dis-
played as though the system were normal. Thus the
normal functioning of the system is not adversely af-
fected by the volume of escalation messages.

Note the conflict with People Know Best.

(Adams, et al., 1996)

This pattern calls on Riding Over Transients as one of the
primary implementation mechanisms; Riding Over Tran-
sients in turn employs Leaky Bucket Counter. We might
use a Leaky Bucket Counter to implement Five Minutes
of No Escalation Messages for variations on five min -
utes.

What makes these patterns a language is that they call on
each other and work together to solve a broad problem, in
this case, Minimize Human Intervention with the system.
Many of the patterns in this language appear in other lan-
guages as well. Leaky Bucket Counters is a versatile pat-
tern that can work at many levels.

A single pattern solves a single problem in a given, gen-
eral way. Different contexts may suggest substantially
different solutions to what is otherwise the same problem.
Each of these contexts deserves a new pattern. A pattern
language may present multiple patterns for the same
problem, although each solution suits a different context.
People Know Best attacks the reliability problem much
differently than the other patterns in this pattern lan-
guage:

Name: People Know Best

Problem: How do you balance automation with hu-
man authority and responsibility?

Context: High-reliability continuous-running systems,
where the system itself tries to recover from all error
conditions.

20 Software Patterns

Forces: People have a good subjective sense of the
passage of time, and how it relates to the probability of
a serious failure, or how it will be perceived by the
customer.

The system is set up to recover from failure cases
(Minimize Human Intervention).

People feel a need to intervene.

Most system errors can be traced to human error.

Solution: Assume that people know best, particularly
the maintenance folks. Design the system to allow
knowledgeable users to override the automatic con-
trols.

Example: [related to the pattern Try All Hardware
Combos]...

Resulting Context: People feel empowered; however,
they are also responsible for their actions.

This is an absolute rule: people feel a need to inter-
vene. There is no perfect solution for this problem, and
the pattern cannot resolve all the forces well. Fool Me
Once is a partial solution, in that it doesn t give the
human a chance to intervene.

Notice the tension between this pattern and Minimize
Human Intervention. (Adams et al., 1996)

Notice that the pattern makes the tension explicit and that it
points to the alternative pattern (which applies to a differ-
ent context). What does Minimize Human Intervention
look like?

Name: Minimize Human Intervention

Problem: History has shown that people cause the
majority of problems in continuously running systems
(wrong actions, wrong systems, wrong buttons).

Context: High-reliability continuous-running digital
systems, where downtime, human-induced or other-
wise, must be minimized.

Forces: Humans are truly intelligent; machines aren t.
Humans are better an detecting patterns of system be-
havior, especially among seemingly random occur-
rences separated by time (People Know Best).

Machines are good an orchestrating a well-thought-
out, global strategy, and humans aren t.

Humans are fallible; computers are often less fallible.

Humans feel a need to intervene if they can t see that
the system is making serious attempts at restoration.
Human reaction and decision times are very slow (by
orders of magnitude) compared to computer proces-
sors.

A quiet system is a dead system.

Human operators get bored with ongoing surveillance
and may ignore or miss critical events.

Normal processing or failure events are happening so
quickly that inclusion of the human operator is infeasi-
ble.

Solution: Len the machine try to do everything itself,
deferring to the human only as an act of desperation
and last resort.

Resulting Context: A system less susceptible to hu-
man error. This will make the system customers hap-
pier. In many administrations, the system operator s
compensation is based on system availability, so this
strategy actually improves the lot of the operator.

Rationale: Empirically, a disproportionate fraction of
high-availability system failures are operator errors,
not primary system errors. By minimizing human in-
tervention, the overall system availability can be im-
proved. Human intervention can be reduced by build-

Software Patterns 21

ing in strategies that counter human tendencies to act
rashly; see patterns like Fool Me Once, Leaky Bucket
Counters, and Five Minutes of No Escalation Mes-
sages.

Note the tension between this pattern and People
Know Best. (Adams et al., 1996)

This top-level pattern clearly points to the smaller patterns
that refine and complete it for specific contexts. Such pat-
tern relationships make this a language with much more
structure than a collection of loosely related patterns.

Many of the patterns in this language point to People Know
Best as an outlier, yet the pattern language makes it clear
that the pattern can t be ignored. Each pattern tells us to do
something specific, but a total design requires a balanced
application of all of these patterns together. No two sys-
tems built using these patterns will be the same because the
systems depend on the design tradeoffs of the business and
the application that serves it.

This language as a whole generates a family of architec-
tures. Most modern telecommunication systems use these
or closely related patterns. Thee patterns define a software
genre, not in terms of protocols, interfaces or requirements,
but in terms of the basic structures and mechanisms that
arise from business needs. The lives both of customers and
of the people who maintain these systems are improved by
these patterns. Companies are starting to recognize the
pattern languages behind their systems and are using them
for documentation and system construction (see Section 5
or the reference by Beck et al. [1996]).

2.2. Pattern Languages Compared to Pat-
tern Catalogues

The popular patterns of Gamma et al. (1995) form a pattern
catalogue, but they do not form a pattern language.

The patterns are not complete enough to generate all pro-
grams in a domain (object-oriented programs are the do-
main of the Gamma et al. patterns).

This doesn t mean that the patterns in a catalogue are with-
out structure. Gamma et al. portray the structure of their
pattern catalogue in the book (inside the back cover); oth-
ers have described additional taxonomies for the Gamma
patterns. (Zimmer, 1995)

Pattern catalogues, particularly the work of Gamma et al.,
are the most common source of patterns in contemporary
use. The book by Gamma et al. was timely: lane enough
that it captured proven practice of the object paradigm and
early enough to be useful to the enormous body of emerg-
ing object-oriented practitioners. Such basic patterns are
likely to remain a key part of software literature for years
to come because their problems and solutions are timeless.
Yet we can go even further: These patterns don t rise to
system concerns. We will likely see more and more pattern
languages in narrow application domains, such as cli-
ent/server design, distributed financial transaction proc-
essing, fault-tolerant telecommunications, and many more.
Although a manageable pattern language can t support all
aspects of system design in general, it can do a good job
within a well-constrained domain. Pattern languages will
continue to grow in importance as the discipline matures.

3. Pattern Domains

Software patterns nook their cue from Alexander s patterns
of urban design and building architecture. We have adapted
his principles and values (but not the patterns themselves)
to software production. The leap from building architecture
to program architecture is intuitive to many: both concern
structure. But patterns can and have been used in less
structured software disciplines such as development proc-
ess and training. Some pattern languages (e.g., Berczuk,
1996b) combine multiple domains.

22 Software Patterns

Here is a process pattern from Coplien and Chisholm that
captures a recurring practice of high-performance software
teams:

Pattern Name: Mercenary Analyst

Problem: Supporting a design notation and the
related project documentation is too tedious a job
for people directly contributing to product arti-
facts.

Context: You are assembling the roles for the or-
ganization. The organization exists in a context
where external reviewers, customers, and internal
developers expect to use project documentation to
understand the system architecture and its internal
workings. (User documentation is considered
separately).

Forces:

If developers do their own documentation, it ham-
pers real work.

Documentation is often write-only.

Engineers often don t have good communication
skills.

Architects can become victims of the elegance of
their own drawings (see rationale).

Solution: Hire a technical writer who is proficient
in the necessary domains but who has no stake in
the design itself. This person will capture the de-
sign using a suitable notation and will format and
publish the design for reviews and for consump-
tion by the organization itself

The documentation itself should be maintained on-
line where ever possible. It must be kept up-to-
date (therefore, Mercenary Analyst is a full-time
job), and it should relate to customer scenarios (as
in the pattern Scenarios Define Problem).

Resulting Context: The success of this pattern de-
pends on finding a suitably skilled agent to fill the

role of mercenary analyst. If the pattern succeeds,
the new context defines a project whose progress
can be reviewed (the pattern Review the Archi-
tecture) and monitored by community experts out-
side the project.

Rationale: Borland s Quattro Pro for Windows;
many AT&T projects (a joint venture based in
New Jersey, a formative organization in switching
support, and others). It is difficult to find people
with the skills to fill this role.

Rybczynski says:

Here is another liability: beautiful drawings
can become ends in themselves. Often, if the
drawing deceives, it is not only the viewer
who is enchanted but also the maker, who is
the victim of his own artifice. Alberti under-
stood this danger and pointed out that archi-
tects should not try to imitate painters and
produce lifelike drawings. The purpose of ar-
chitectural drawings, according to him, was
merely to illustrate the relationship of the
various parts... Alberti understood, as many
architects of today do not, that the rules of
drawing and the rules of building are not one
and the same, and mastery of the former does
not ensure success in the latter. (Rybczynski,
1989: p. 121)

(adapted from Coplien, 1995a) (DeBruler, 1995)

Here is a training pattern from a delightful pattern language
by Dana Anthony of Knowledge Systems Corporation,
Inc.:

Chicken & Egg

Other possible names for the pattern include Need to
Know, Simplified Mutual Prerequisites, Illusion of
Understanding.

Software Patterns 23

Problem: Two concepts are each a prerequisite of the
other. It s a chicken and egg situation: a student who
doesn t know A won t understand B; but a student who
doesn t know B won t understand A.

Constraints and Forces: You could just explain one
concept and then the other, but an the halfway point,
everyone would be confused. Many people, if con-
fused, stop trying; this invalidates a just go ahead
approach. You could just simplify each concept to the
point of incorrectness, just for the sake of explaining
the other one. But many people object to being lied to,
even for their own good. This invalidates the Santa
Claus and Easter Bunny approach.

Solution: Give the students the illusion of under-
standing, by explaining each of A and B very superfi-
cially, but essentially correctly. Iterate your explana-
tions over and over, each time going into more detail.
Be sure to maintain the illusion of understanding an
each step.

Related Patterns: Pattern 3: Mix New and Old is re-
lated. As you iterate through a chicken-and-egg pair of
topics, mix new material on each topic with a review
of material already covered. Also, vary the learning
style each time through. (Anthony, 1996)

Patterns may be useful in any problem-solving domain
with a legacy of experience. Narrowly defined domains,
such as those whose structure can easily be captured in
frameworks, lend themselves to integrated pattern lan-
guages (see Section 2).

4. Classifying Patterns

The Western world view has been strongly shaped by Car-
tesian philosophy and its hierarchical models (in fact, this
goes all the way back to Plato). Hierarchies are one of the
most predominant structuring and abstraction techniques in
Western thought. We see this in the procedural hierarchies

of structured design and the inheritance hierarchies of basic
object-oriented design.

Early pattern category models fell naturally into this hierar-
chical heritage. In Section 4.1, we look at early software
pattern categories. As we understand patterns better, we
find simple hierarchies unsatisfying. In Section 4.2, we
look to Alexander for other pattern organization models.

4.1. Three Pattern Levels

The early pattern community has converged on a layered
schema of pattern categories. The layering differentiates
levels of abstraction, with idioms at the bottom, design
patterns in the middle, and frameworks at the top. This
section describes each of those categories.

4.1.1. Idioms
Idioms are low-level patterns that depend on a specific im-
plementation technology such as a programming language.
Idioms are among the earliest published software patterns,
having emerged in late 1991 (Coplien, 1992), although
early idioms were not in pattern form.

Here is an idiom cast in pattern form by the writer based on
input from Andrew Koenig and Bjarne Stroustrup, who re-
late broad experience with the pattern:

Pattern: Detached Counted Handle/Body

many C++ programs express types whose imple-
mentations use dynamically allocated memory. Pro-
grammers often create such types, and put them in li-
braries without adding the machinery to make these
types as well-behaved as built-in types. The standard
solution, Counted Body Pattern, embeds a reference
count in a shared implementation that is managed by a
handle class:

24 Software Patterns

However, we may not add a reference count to a li-
brary abstraction, since we only have object code and a
header file. We could solve this with an added level of
indirection,

but that adds a cycle to each reference, and may be too
expensive.

Therefore

Associate both a shared count and a separate
shared body with each instance of a common han-
dle abstraction:

Now we can access the body with a single level of in-
direction, while still using only a single indirection for
the count.

Handles are slightly more expensive to copy than in
Counted Body, memory fragmentation may increase,
and initial construction overhead is higher because we
are allocating multiple blocks.

4.1.2. Design Patterns
Bridge (page 15) is a design pattern. Design patterns made
their debut in the landmark book by Gamma et al. (1995).
Design patterns are one level broader in scope than idioms.
Their problem, forces, and solution are language independ-
ent, so they stand as general design practices for common
classes of software problems.

The design patterns of Gamma et al. (1995) capture the
good practices of object-oriented design independent of a
particular programming language. They are microarchitec-
tures: structures larger than objects but not large enough to
be system-level organizing principles.

4.1.3. Framework Patterns
We find patterns at the system level as well. There is a
close relationship between patterns and frameworks. A
framework is a partially completed body of code designed
to be extended for a particular application. Most frame-
works build on system-level patterns that tie together sys-

Software Patterns 25

tem parts and mechanisms. The pattern form is a good way
to document a framework and how to extend it.

As an example of a framework-level pattern, consider the
Streams framework of Stephen Edwards:

Problem: This pattern allows designers to con-
centrate on the data flow of a complex piece of
software without concern for the techniques indi-
vidual components will use to distribute the com-
putational burden...

Context: The pattern applies to most imperative
languages... Streams are most effective when the
architecture of a software subsystem is best cap-
tured by highlighting the data flow within it. Thus,
streams work naturally with pipe and filter-style
conceptual models of program operation...

. . .

Forces: ...

• The communications mechanisms that will be
used between subsystem components can
have a major impact on both maintainability
and adaptability...

• Different components within the subsystem
may choose very different processing strate-
gies...

• Achieving composability of independent or
semi-independent components is critical for
maintainability and adaptability...

Solution: Model each component in the subsystem as
a stream of data objects... (Edwards, 1995)

Another example is Wolf and Liu s Client/Server
framework pattern. This is a large umbrella pattern
fleshed out by other patterns in the pattern language:

A Client/Server Framework

Problem

An object-oriented client/server framework for
communicating with a legacy host system, reduced
to its most elemental terms, must let its user locate
objects of interest, examine them, and change (or
create) them.

Solution

The client/server framework pattern, then, is an aggre-
gation of searching, viewing, and updating/creating
patterns. A successful framework depends on the
quality with which these three patterns are imple-
mented, which in turn depends recursively on the
quality with which their constituent patterns are im-
plemented. (Wolf & Liu, 1995)

This pattern builds on other patterns that can be found in
the same reference.

4.1.4. Problems with the Three Levels
Splitting patterns into three levels of abstraction idiom,
design pattern, and framework is arbitrary in the sense
that abstraction falls along a continuum without clear
boundaries. This makes classification subjective.

But there is a deeper issue as well. Many patterns transcend
all three levels of architecture. Consider Model-View-
Controller, which started as an idiomatic artifact of the
Smalltalk culture. As it became more broadly understood, it
became a design staple for object-oriented user interface
design. Buschmann et al. (1995: p. 334) use it as a frame-
work-level pattern because it is the primary structuring
principle at the highest levels of the system. Patterns this
broad are difficult to categorize according to this three-
level abstraction taxonomy.

The three-level organizing scheme has serious limitations
and ambiguities. There are other good organizing principles
that we can build on as we organize and index pattern
catalogues and pattern languages. Some hark back to Alex-
anderian roots.

26 Software Patterns

4.2. Alexanderian Scaling

Alexander (1979; p 325) talks about building a general
pattern language from specific ones. He is fascinated by
similar patterns in multiple pattern languages. For example,
he notes that ENTRANCE TRANSITION is part of the
language for the garden, and also part of the language for
the house. We see related patterns in distinct design do -
mains too: the CHECKS pattern language (page 41) recurs
in the IEEE floating point standard as Not a Number.
Such similarities point to more general patterns at a higher
level.

We find this same kind of layering in architectural patterns.
Consider the following two patterns from telecommunica-
tion systems. Riding Over Transients is a broad pattern that
contains or builds on the smaller pattern, Leaky
Bucket Counter:

Pattern: Riding Over Transients

Alias: Make sure problem really exists

Problem: How do you know whether a problem will
work itself out or not?

Context: A fault-tolerant application where some er-
rors, overload conditions, etc. may be transient. The
system can escalate through recovery strategies, taking
more drastic action an each step. A typical example is
a fault tolerant telecommunication system using static
traffic engineering, where you want to check for over-
load or transient faults.

Forces:

You want to catch faults and problems.

There is no sense in wasting time or reducing level of
service trying to solve a problem that will go away by
itself

Many problems work themselves out, given time.

Solution: Don t react immediately to detected condi-
tions. Make sure the condition really exists by check-

ing several times, or use Leaky Bucket Counters to
detect a critical number of occurrences in a specific
time interval. For example: by averaging over time or
just by waiting a while, give transient faults a chance
to pass.

Resulting Context: Errors can be resolved with truly
minimal effort, because the effort is expended only if
the problem really exists. It allows the system to roll
through problems without its users noticing, or without
bothering the machine operator to intervene (as in the
pattern Minimize Human Intervention).

Rationale: This pattern detects temporally dense
events. Think of the events as spikes on a time line. If
a small number of spikes (specified by a threshold) oc-
cur together (where together is specified by the in -
terval), then the error is a transient. Used by Leaky
Bucket Counters, Five Minutes of No Escalation Mes-
sages, and many others.

Author: James 0. Coplien (Adams, et al., 1996)

Here s the second pattern, Leaky Bucket Counters. It s a
specialization of the more general Riding Over Transients:

Name: Leaky bucket counters

Problem: How do you deal with transient faults?

Context: Fault-tolerant system software that must deal
with failure events. Failures are tied to episode counts
and frequencies.

One example from 1A/1B processor systems in AT&T
telecommunication products: As memory words (dy-
namic RAM) got weak, the memory module would
generate a parity error trap. Examples include both 1A
processor dynamic RAM and 1B processor static
RAM.

Forces: You want a hardware module to exhibit hard
failures before taking drastic action. Some failures
come from the environment, and should not be blamed
on the device.

Software Patterns 27

Solution: A failure group has a counter that is ini-
tialized to a predetermined value when the group is
initialized. The counter is decremented for each fault
or event (usually faults) and incremented on a peri-
odic basis; however, the count is never incremented
beyond its initial value. There are different initial
values and different leak rates for different subsys-
tems: for example, it is a half-hour for the 1A mem-
ory (store) subsystem. The strategy for lA dynamic
RAM specifies that the first failure in a store (within
the timing window) causes the store to be taken out
of service, diagnosed, and then automatically restored
to service. On the second, third, and fourth failure
(within the window) you just leave it in service. For
the fifth episode within the timing window, take the
unit out of service, diagnose it and leave it out.

If the episode transcends the interval, it s not tran-
sient: the leak rate is faster than the refill rate, and the
pattern indicates an error condition. If the burst is
more intense than expected (it exceeds the error
threshold) then it s unusual behavior not associated
with a transient burst, and the pattern indicates an er-
ror condition.

Resulting Context: A system where errors are iso-
lated and handled (by taking devices out of service),
but where transient errors (e.g., room humidity) don t
cause unnecessary out of service action.

Rationale: The history is instructive: In old call
stores (lA memories that contained dynamic data),
why did we collect data? For old call snores, the field
replaceable unit (FRU) was a circuit pack, while the
failure group was a store comprising 12 or 13 packs.
We needed to determine which pack is bad. Memory
may be spread across 7 circuit packs; the transient bin
was only one bin, not enough to isolate the failure.
By recording data from four events, we were better
able to pinpoint (90% accuracy) which pack was bad,
so the machine operator didn t have to change 7
packs.

Why go five failures before taking a unit out of serv-
ice? By collecting failure data on the second, third,
and fourth time, you are making sure you know the
characteristics of the error, and are reducing the un-
certainty about the FRU. By the fifth time, you know
it s sick, and need to take it out of service.

Periodically increasing the count on the snore creates
a sliding time window. The resource is considered
sane when the counter (re-) attains its initialized
value. Humidity, heat, and other environmental
problems cause transient errors which should be
treated differently (i.e., pulling the card does no
good).

See, for example, Fool Me Once, which uses simple
leaky bucket counters.

This is a special case of the pattern Riding Over
Transients.

Strategy alluded to in p. 2003-4 OF BSTJ XLIII
5(10), Sept. 1964.

Author: Robert Gamoke (Adams, et al., 1996)

4.3. Other Scaling Approaches

Pattern authors have used other techniques to organize
patterns. One common approach has been to use umbrella
patterns that tie multiple smaller patterns together. The
smaller patterns may be disjointed, with the umbrella pat-
terns as the sole locus of the relationship between them.
This is how patterns are organized within a pattern lan-
guage. The Client/Server pattern of Wolf and Liu (see page
25) heads such a pattern language.

4.4. Anti-Patterns

Anti-patterns are literature written in pattern form to en-
code practices that don t work or that are destructive. Anti-
patterns were independently pioneered by Sam Adams,

28 Software Patterns

Andrew Koenig (Koenig, 1995), and the writer. Many anti-
patterns document the rationalizations used by inexpert de-
cision makers in the Forces section. Consider this organi-
zational anti-pattern, Egalitarian Compensation:

Name: Egalitarian Compensation

Problem: Providing appropriate motivation for suc-
cess.

Context: A community of developers meeting night
schedules in a high-payoff market.

Forces: Disparate rewards motivate those who receive
them, but may frustrate their peers. You want to en-
courage team cohesion, build team identity, and in
general encourage team behavior.

Supposed solution: The entire team (social unit)
should receive comparable rewards, to avoid de-
motivating individuals who might assess their value by
their salary relative to their peers.

Resulting Context: An organization where people feel
accepted as peers because, financially, they are peers.
However, leaders will still emerge and there will still
be an inequitable distribution of work; that distribution
of work is no longer commensurate with compensa-
tion.

People figure this out, and lose one of their motiva-
tions to excel. The pattern has the opposite effect of
encouraging behavior where people over-extend them-
selves.

Rationale: Note that this differs from Compensate
Success (Coplien, 1995a) in only one detail: that out-
standing contributors don t receive exceptional re-
wards. High rewards to some individuals may still de-
motivate their peers, but rewarding on a team basis
helps remove the personal aspect of this problem,
and helps establish the mechanism as a motivator, in
addition to being just an after-the-fact soother.

Author: James 0. Coplien (originally posted to the
WikiWikiWeb, http://c2.com/cgi/wiki ?Egalitarian-
Compensation).

This pattern might be viewed as the shadow of Compen -
sate Success (Coplien, 1 995a), but not every pattern has a
corresponding anti-pattern.

Anti-patterns don t provide a resolution of forces as pat-
terns do, and they are dangerous as teaching tools: good
pedagogy builds on positive examples that students can
remember, rather than negative examples. Anti-patterns
might be good diagnostic tools to understand system prob-
lems.

4.5. Meta-Patterns

Wolfgang Pree s book (Pree, 1995) introduced the term
meta-pattern to the software pattern community. It may be
a misnomer: there isn t much meta about the patterns,
although they are building blocks from which other pat-
terns can be built. In particular, one can view Pree s meta-
patterns as generalizations of key structural (implementa-
tion) aspects of many of the GOF patterns (Gamma et al.,
1995).

One interesting aspect of Pree s work is the concept of hot
spots, which are the locations in a framework where pa-
rameterization takes place. Pree sees hot spots as crucial
places to apply patterns.

For a broad and thought-provoking look at meta-patterns in
general, see Volk (1995).

4.5. Patterns and Strategies

The book Object Models: Strategies, Patterns and Appli-
cations by Coad, North, and Mayfield (1995) uses the term
pattern to refer to object-oriented design templates. How-

Software Patterns 29

ever, the book shows almost no ties to the mainstream pat-
tern discipline, and the patterns lack effective rationales
and criteria for application that are central to Alexanderian
patterns.

For a review of this work that further explores its relation-
ship to patterns, see Berczuk (1996a).

5. Pattern Pragmatics

Much of this paper focuses on principles, philosophies, and
values behind patterns. Before we move on to the deeper
subject of generativity and the pattern value system, it
might be good to spend some time appealing to the techni-
cal management community. What should you expect pat-
terns to do for you? And what should you expect them not
to do for you?

5.1. The Goal of Patterns

Cost, customer satisfaction, productivity, and development
interval reduction are among the holy grails of software
development. Patterns contribute indirectly to many of
these goals:

• Productivity. By providing domain expertise,
patterns short-circuit the discovery interval for
many important design structures. “Discovery” in-
cludes a designer’s activities to find out how the
current system works as a basis for maintenance
changes.

More importantly, patterns avoid rework that
comes from inexpert design decisions. As an ex-
ample, programmers who don’t understand idioms
like the Counted Body Idiom (page 15) either will
spend a long time converging on the solution, or
will employ solutions that are less maintainable or
just plain wrong.

• Development Interval. Many software patterns
are a form of design-level reuse. Patterns can re-
duce the amount of time required to build solu-
tion structures because they allow designers to
use design chunks that are larger than functions
or objects.

Patterns also provide road maps to the structure
of existing systems, making it easier for the in-
expert designer to understand and navigate ex-
isting software. This can reduce discovery costs.
Our studies an AT&T suggest that as much as
half of software development effort can be at-
tributed to discovery.

• Cost. Cost reduction follows in a straightforward
way from development interval reduction.

• Customer Satisfaction. Customer satisfaction is
largely a result of the other factors.

Recently, a large project at AT&T documented its key ar-
chitectural patterns as part of the project architecture
documentation. These patterns proved to have strategic
value to a successor project, both because they educated a
new development community about what the new system
needed to do and about how to achieve the required func-
tionality.

Of course, your mileage will vary. Patterns alone promise
none of these benefits. They are a tool that amplifies hu-
man expertise and the power of applicable technologies,
good management practices, and good business practices
and opportunities.

5.2. What Patterns Can’t Do

• Since patterns capture experience, some impor-
tant patterns of new business domains won’t be
there to support development of the first system.

30 Software Patterns

We can argue that many important system pat-
terns transcend domains and that new business
domains can build on patterns from other do-
mains. This is true to a degree, particularly for
general patterns such as object-oriented design
patterns, distributed processing patterns, cli-
ent/server patterns, and the like. But each new
domain begs new patterns that won’t be thereat
the outset. Such patterns will come only with ex-
perience.

• Patterns guide humans, not machines. They will
not generate code; they do not live inside CASE
tools. They are literature that aids human deci-
sion-making processes. Patterns should not, can-
not, and will not replace the human programmer.

• Although patterns leverage the knowledge of ac-
knowledged experts, they will not turn everyday
workers into experts. Patterns keep everyday de-
signers from making inexpert errors and invite
them to consider new principles. Patterns them-
selves cannon inculcate the intuitive sense of
aesthetics we find in truly great designers; these
are intuitive, almost instinctive. Perhaps long-
term experience with patterns can help novices
evolve into experts, as any long-term experience
can lead the right people into true expertise.

5.3. A Pattern Program

Patterns are not a design method, but they can be used as
an adjunct to any design method. Patterns don t require a
major shift in organization or process, but they do depend
on a supportive culture. This culture includes pattern
training, pattern mining, pattern publication, and pattern
application.

5.3.1. Pattern Training
We run a two-day workshop to help people become pro-
ficient with patterns. We spend a bin of time relating the
history: the place of Alexander as inspiration and as the
source of much of the terminology. We describe what
problem patterns are trying to solve: to capture corporate
intellectual assets, particularly those of architecture, in a
body of literature. We describe the basics of the pattern
form: problem, context, forces, solution, resulting con-
text.

To teach designers about architectural patterns, we often
need to relate architectural basics. We emphasize that
architecture is about relationships between parts, not just
about interfaces and cohesion. We emphasize that ar-
chitecture serves a human need: to free development
teams to work as independently as possible, decoupled
from other groups along architectural force lines.

But the key aspect of pattern training comes when stu-
dents write patterns. We ask them to think of one thing
they know that is important but they think isn t widely
appreciated. We ask them to struggle with the forces,
and to put their gem into pattern form. This exercise
serves several purposes. First, it underscores the impor-
tance of forces to the student. Second, it gives the stu-
dent a very up-close tour of patterns, so they can read
them more instructively. Third, it helps the student real-
ize that everyone has something important to contribute;
this perspective helps combat the notion that patterns
must be esoteric and pompous. This exercise helps un-
derscore important aspects of the pattern value system.

5.3.2. Pattern Mining
We use common industry patterns like the GOF patterns,
but many of our key patterns aren t object oriented an all.
Every business thrives on the patterns it s refined over dec-
ades of evolution. They are the gems you want to seek out
and document.

Software Patterns 31

A pattern-mining exercise should focus on the key intel-
lectual (or business) assets of an enterprise. Ask the en-
terprise: what are the key technical strategies that have
made the company great (quick product turnaround,
availability, consistent performance, etc.)? Approach ex-
perts in these areas and ask them about the particulars;
many of their answers will be patterns, and many others
can easily be transformed into patterns. (I know this
sounds presumptuous, but try it it has worked for many
organizations using patterns for the first time). The
knowledge elicitation exercise is similar to that used by
knowledge engineers, and it is fraught with the same
problems. We overcome these problems by employing
junior experts as interpreters in the interviews they
learn stuff and have fun, too!

I held each interview session to one-and-a-half hours, and
transcribed the patterns into HTML (Hyper-Text Markup
Language, the lingua franca of the World Wide Web) my-
self without any fancy tools. The pattern acquisition rate
was high for us, perhaps because of luck or because of the
experts personalities.

It helped if the interviewees had had some exposure to
patterns, but we had good experiences with domain ex-
perts who had never heard of patterns.

One can take a more bottom-line oriented approach to
pattern mining. First, identify the areas in which you
know your organization is lacking. Find someone who
knows how to handle those areas well and mine patterns
from them. I remember working on a project where only a
single project manager consistently met his schedules,
and we mined his managerial patterns to see what allowed
him to succeed while others failed.

It s crucial to mine patterns from people, organizations, or
products with long, proven track records.

5.3.3. Pattern Publication
Patterns enjoy publication both via the World Wide Web,
usually as HTML documents, and in the conventional
press. There isn t too much remarkable about pattern publi-
cation except that hypermedia seem to be particularly valu-
able as a navigation aid, especially for pattern languages.

More important than the format of publication is the review
process leading up to publication. Good patterns are time-
less literature. By timeless, we mean literature with broad
appeal that is easily understood, and which captures time-
less design wisdom. It goes without saying that very little
timeless literature has emerged from the engineering com-
munity.

One important aspect of the pattern publication process is
the pattern review. A good review can help ensure that the
pattern is readable, that it hits its audience, and that it does
its job. Patterns are literature, and we believe they deserve
more than the dry design reviews we typically afford other
software documents. Richard Gabriel, himself a poet (in
addition to being one of the inventors of CLOS), naught us
how poetry is reviewed at poetry conferences. We adapted
that approach and call these sessions writers workshops.

The participants in a workshop are all pattern authors. The
author reads a selection from the pattern, and then sins
down and becomes invisible until the very end of the se s-
sion. One of the reviewers summarizes the pattern. There is
then open discussion on why the pattern works and what s
good about it. Next, reviewers can make suggestions on
how to improve the pattern: content, form, us-
age anything is fair game. Finally, the author can ask for
clarification. We found that each session took about an
hour.

There are many pattern forms (Section 1.3); which form
should you use? Experiment or choose a form you re com-
fortable with. All are equally effective under suitable con-
ditions.

32 Software Patterns

5.3.4. Pattern Application
There is little magic to pattern application. Once patterns
are in place, they can be used as reference material by the
design community. Rather than an oracle for fixing prob-
lems that arise, it is better to use patterns as a domain tuto-
rial for designers. Designers should skim all catalogued
patterns for their domains at least once. As design problems
arise, designers can return to the original patterns for de-
tailed guidance.

Broadened exposure and experience helps to refine patterns
over time, enlarging their context and illuminating their
forces and rationales. A good pattern is living literature that
matures with age.

5.3.5. Where to Go from Here
This has been a shorn section, partly because it s difficult
to codify the correct steps or proven program for success.
Each culture should tune patterns to its needs. Much of the
process must be learned from experience. Learning from
others experiences may also help; for more insights, see
the experience paper by Beck et al. (1996).

6. Generativity

In many problem-solving strategies, we try to attack
problems directly. In doing so, we often attack only
symptoms, leaving the underlying problem unresolved.
Alexander understood that good solutions to architectural
problems go at least one level deeper. The structures of a
pattern are not themselves solutions, but they generate
solutions. Patterns that work this way are called genera-
tive patterns. A generative pattern is a means of letting
the problem resolve itself over time, just as a flower un-
folds from its seed:

9. This quality in buildings and in towns cannot be
made, but only generated indirectly by the ordinary
actions of the people, just as a flower cannot be made,

but only generated from the seed (Alexander, 1979. p.
xi)

And later:

An ordinary language like English is a system which
allows us to create an infinite variety of one dimen-
sional combinations of words, called sentences. . . . A
pattern language is a system which allows its users to
create an infinite variety of those three dimensional
combinations of patterns which we call buildings, gar-
dens, towns.

. . .

Thus, as in the case of natural languages, the pattern
language is generative. It not only tells us the rules of
arrangement, but shows us how to construct arrange-
ments as many as we want which satisfy the rules.
(Alexander, 1979: pp. 185 186)

Like many other facets of Alexander s philosophy, this
philosophy can be traced back to Eastern schools of
thought (Lao Tsu principles of nonaction, part 3). This
generativity is an important aspect of the Quality Alex-
ander seeks. It is an elusive quality, so elusive he calls it
the quality without a name ; we ll revisit that in Sec-
tion 7.1, but we need not turn to esoteric sources for in-
sights on the importance of generativity in problem-
solving; other contemporary sources will do. In Seng ,
we find:

What, exactly, does it mean to say that structures
generate particular patterns of behavior? (Seng ,
1990: p. 45)

... a fundamental characteristic of complex human
systems ... [is that] cause and effect are not
close in time and space. By effects, I mean the
obvious symptoms that indicate that there are
problems drug abuse, unemployment, starving
children, falling orders, and sagging profits. By
cause I mean the interaction of the underlying
system that is most responsible for generating the

Software Patterns 33

symptoms, and which, if recognized, could lead to
changes producing lasting improvement. Why is
this a problem? Because most of us assume they
are most of us assume, most of the time, that
cause and effect are close in time and space.
(Seng , 1990: p. 63)

At this writing, few published software patterns exhibit
generativity. Here is a great generative pattern from a do-
main outside software:

Name: Hands In View

Problem: The skier fails to commit downhill on
steeps and bumps, resulting in slides, backward
falls, and yard sales.

Context: In order to explore the entire mountain
environment, a skier must be comfortable and
adaptable to any terrain and rapid terrain change. To
take advantage of this pattern the skier should be
skiing at a level at which parallel turns can be
linked consistently.

Forces:

Fear of falling is the most basic of all responses

Reliance on equipment is essential

Continuous movement is essential

Fatigue can be a factor in long descents

Commitment downhill over skis is essential for skis
to function as designed

Solution: Concentrate on keeping the hands in
view. Bring then into sight immediately after each
pole plant and turn.

Resulting Context: Keeping the hands in view
changes the alignment of the body from sitting
timidly back and allowing the edges to skid out
from under the skier. Thus, keeping the hands in
view pulls the body forward and thus downhill,

bringing the skier s weight over the downhill ski,
forcing the edge to bite and turn.

Rationale: As steepness increases, the natural
tendency of any sane person is to sit back against
the hill and retain the perpendicularity the inner ear
prefers. Unfortunately, skis must be weighted to
perform as designed, the weight causing flex, which
in turn pushes the edges into the snow in an arc,
making a turn. Therefore it is essential to throw
oneself down the mountain and over the skis, de-
pending on them to catch the fall as they bite into
the snow to turn underneath the perpetually falling
skier. Intellectually this can be clearly understood
but fear prevents execution. Concentrating on
something as simple and indirect as look an your
hands causes the desired behavior without directly
confronting the fear. This is directly analogous to
what occurs when an individual walks: the weight is
thrown forward in a fall, with the consequent for-
ward thrust of the leg to catch this fall, repeated for
left and right sides in a continuous tension and re-
lease of yielding to gravity in order to defy it.

Author: Don Olson 95/07/07

Originator: Anonymous ski instructor somewhere
in Utah. Wherever you are, thanks for providing the
breakthrough to better skiing for the author. (Per-
sonal correspondence with Don Olson, July 1995)

Why is generativity important? First, as Seng says, most
real problems go deeper than their surface symptoms, and
we need to address most interesting problems with emer-
gent behavior. Second, a good pattern is the fruit of hard
work and intense review and refinement. Simple problems
can be addressed through simple rules, since the solutions
are more direct or obvious than we find in generative
solutions. The pattern form excels an engaging the reader
in generative solutions: to understand the principles and

34 Software Patterns

values of lasting solutions and long-term emergent behav-
ior. Good patterns go beyond the quick fix.

Pattern languages as a whole may exhibit a gestalt ge n-
erativity. Each of the patterns of the CHECKS language
(page 41) solves a problem, but the language as a whole
solves a much broader software engineering problem than
is addressed by any pattern alone. This surprise solution
is a form of generativity. Caterpillar s Fate (Kerth, 1995)
has this same property.

7. The Pattern Value System

Software patterns usually have a strong technical compo-
nent, which hopefully has come through in the patterns pre-
sented here, driven by the principles we ve discussed.
These principles include the importance of design and ar-
chitecture, particularly as it extends beyond modular parti-
tioning, principles of form and organization, and deep prin-
ciples such as generativity.

Many of these principles are driven by an even deeper
value system. We explore that value system here in Section
7. This is a long section for two reasons. First, this material
is little understood or socialized in the software commu-
nity, and this forum provides an opportunity to raise indus-
try consciousness about patterns. Second, this material is
particularly important. These values support principles, and
these principles support the goals of software development
or of most any human endeavor: human comfort, what Al-
exander calls being fully alive.

Many of these values come from Alexander. Though many
of Alexander s building architecture principles don t
translate into software, the essential human values do.
Some of these values come from the early software patterns
community, and are less nightly linked to Alexander. They
are nowhere codified today that I know of.

However, one finds these values extolled an pattern confer-
ences and in much of the pattern literature; they are part of
the emerging pattern culture.

Do all pattern practitioners adhere to all features of this
value system? Certainly not. Many pattern users draw on
the existing literature simply as a design reference. But
these values are a visible feature of the culture of pattern
workshops and conferences and of other gatherings of
authors, editors, pattern reviewers, and researchers in the
mainstream pattern discipline.

7.1. The Quality Without a Name

Alexander strives for the quality without a name in the
patterns he captures and in the rooms, buildings, and towns
they engender. We seek a similar quality in the software we
build with patterns.

What is this nameless quality? Most coders have had the
pleasure of knowing it, when they build a particularly sat-
isfying module or system, code that just feels right. Of
course, to define it or name it would miss the point. How-
ever, recurring themes in the pattern literature point out as-
pects of what such a Quality might be.

One theme, close to Alexander s goals of architecture, is to
serve human needs. We too often overlook that all software
serves a human need; the pattern form, particularly in the
forces and resulting context, is an opportunity to draw at-
tention to these needs. We take up this issue in Section 7.8
on aesthetics, but it goes beyond aesthetics to the broader
question of human comfort. We will take up this topic
again in Section 7.7.

Generativity (Section 6; in particular, note the quote from
Alexander) is an important part of the Quality, since it re-
flects a deep understanding of the problem, and a deeply
rooted solution.

Software Patterns 35

Alexander notes that the Quality is slightly bitter in its
reminding us that nothing is permanent. Alexander
thought nothing of using the shade of a neighboring tree
to orient a house for light exposure, although one might
think that the timeless house shouldn t defer to some-
thing as short-lived as a tree. To knowingly recognize
and build to today s environment, knowing that the envi-
ronment will change, helps put evolution into perspec-
tive. This evolution and consciousness of time are cen-
tral to the Quality.

The quality without a name is certainly subjective, and it
may mean something different to each designer. In the
rest of this section, we explore other values that feed the
edges of this quality, values that have taken root in the
pattern culture.

7.2. Real Stuff

Patterns are about real stuff. They capture proven
practice, rather than postulates, theories, or detached
models of techniques that might work.

Kent Beck relates a story from the 1987 workshop
where some of the earliest discussions of software pat-
terns took place (see Beck, 1988). His patterns offered
design principles that built on repeated success in appli-
cation, principles that could be even more broadly ap-
plied if people knew about them. Another workshop at-
tendee gave a talk based on the premise that even though
there was not broad experience with a particular tech-
nique, all would be rosy if only ordinary software engi-
neers would start using a particular set of techniques that
had been developing in academic research an that time.
We want to celebrate what people do that works, not tell
them to do something else on the basis only of our intui-
tion, arguments, and aspirations.

A good pattern draws on real examples in its rationale
section; some forms have their own examples section

(see Section 1.3). As a rule of thumb, a good pattern
should have three examples that show three insightfully
different implementations.

In this regard, the patterns community takes up the quote
attributed to W. Edsgar Dijkstra: Premature abstraction
is the root of all evil.

We focus on real stuff in the solution section of a pat-
tern. A solution should tell the reader to do something
specific and concrete.

Yet, the concreteness of real stuff isn t inconsistent with
abstraction. Abstract does not mean vague. An abstrac-
tion, while lacking detail (by definition), can be crisp,
sharp, and instructive. We can draw an analogy from
software design. Though the abstract interface of a
String class distances the user from the implementation,
it is all that is visible to the user. Together with docu-
mentation that explains its use, the abstract interface is
sufficient for effective use. A good pattern should be the
same way: sufficiently abstract that it could be imple-
mented a million times without ever being the same
thing twice, yet specific enough to tell the user what to
do.

Yet Gabriel also admonishes us to look beyond the ab-
straction to what lies inside; that is where many important
patterns lie:

But what of geometry? Alexander always goes back to
this. And one of his key questions is this: What is it
that dictates geometry possessing the quality without a
name what is that thing that is falsely called sim -
plicity ?

What corresponds to geometry for us?

I think it is the code itself. Many talk about the need
for excellent interfaces and the benefits of separat-
ing interface form implementation so that the im-
plementation may vary. But few people talk seri-

36 Software Patterns

ously about the quality of the code itself. In fact,
most theorists are eager to lump it into the category
of things best not discussed, something to be hidden
from view so that it can be changed in private. But
think of Alexander s remarks above: the quality
comes in nearly equal part from the artistry and
creativity of the builder who is the one whose hands
most directly form the geometry that gives the
building its quality and character. Isn t the builder
the coder? And isn t the old-style software method-
ology to put design in the hands of analysts and de-
signers and to put coding in the hands of lowly cod-
ers, sometimes offshore coders who can be paid the
lowest wages to do the least important work?
(Gabriel. 1996: p. 68)

7.3. Constraints Are Liberating

The pattern form constrains the pattern writer. Remov-
ing form from the problem-solvers consideration frees
them to focus on other things. We feel that the pattern
style is better than unstructured natural language be-
cause of the guidance it offers, and that it is also better
than formats like SGML. SGML forms don t understand
the semantics and relationships of pattern sections, so
they don t offer enough constraints. The main benefit
SGML forms and in particular HTML, an SGML d e-
rivative is their wide acceptance as a portable publica-
tion format.

The finished pattern constrains the developer. A good pat-
tern helps the developer focus on the problem by drawing
out important forces. This can help keep the developer
from unnecessarily exploring blind alleys. Developers still
must apply their design insights and experience a good
pattern leaves considerable leeway for creative adaptation.

Alexander himself says:

The rules of English make you creative because
they save you from having to bother with mean-
ingless combinations of words. . . . A pattern lan-
guage does the same. (Alexander, 1979: pp.
206 207)

7.4. Participative Architecture

Alexander believed that people should participate in the de-
sign of their dwellings instead of deferring to a professional
architect. Architecture meets deeply human needs, and it is
more trouble for an architect to assimilate the needs of an
individual both those owing to personal preferences and
those rising from social context that it is for individuals
to derive the design themselves.

This same spirit is at the foundation of the software pattern
community. This was one of the early strategies that Kent
Beck and Ward Cunningham first employed in patterns for
human interface design: to let the users of the system de-
sign its human interface, as Alexander said the occupants
of a building should design it.

The writer talks about this principle in one of his organiza-
tional patterns, Architect Also Implements:

Architect Also Implements...

Problem: Preserving the architectural vision through
to implementation

Context: An organization of Developers that needs
strategic technical direction.

Forces: Totalitarian control is viewed by most devel-
opment teams as a Draconian measure. The right in-
formation must flow through the right roles.

Solution: Beyond advising and communicating with
Developers, Architects should also participate in im-
plementation.

Software Patterns 37

Resulting Context: A development organization
that perceives buy-in from the guiding architects,
and that can directly avail itself of architectural ex-
pertise.

Design Rationale: The importance of making this
pattern explicit arose recently in a project I work
with. The architecture team was being assembled
across wide geographic boundaries with narrow
communication bandwidth between them. Though
general architectural responsibilities were identified
and the roles were staffed, one group had expecta-
tions that architects would also implement code; the
other did not.

One manager suggests that, on some projects, ar-
chitects should focus only on the implementation of
a common infrastructure, and that the implementa-
tion of non-core code should be left solely to the
Developer role.

Rybczynski tells us, It would be convenient if ar -
chitecture could be defined as any building de-
signed by an architect. But who is an architect? Al-
though the Acad mie Royale d Architecture in Paris
was founded in 1671, formal architectural schooling
did not appear until the nineteenth century. The fa-
mous cole des Beaux-Arts was founded in 1816;
the first English-language school, in London, in
1847; and the first North American university pro-
gram, at MIT, was established in 1868. Despite the
existence of professional schools, for a long time
the relationship between schooling and practice re-
mained ambiguous. It is still possible to become an
architect without a university degree, and in some
countries, such as Switzerland, trained architects
have no legal monopoly over construction. This is
hardly surprising. For centuries, the difference be-
tween master masons, journeymen builders, joiners,
dilettantes, gifted amateurs, and architects has been
ill defined. The great Renaissance buildings, for ex-
ample, were designed by a variety of non-architects.

Brunellesehi was trained as a goldsmith; Michel-
ango as a sculptor, Leonardo da Vinci as a painter,
and Alberti as a lawyer; only Bramante, who was
also a painter, had formally studied building. These
men are termed architects because, among other
things, they created architecture a tautology that
explains nothing. Witold Rybczynski, The Most
Beautiful House in the World, page 9.

Vitruvius notes: . . . [A]rchitects who have aimed at
acquiring manual skill without scholarship have never
been able to reach a position of authority to correspond
to their pains, while those who relied only upon theo-
ries and scholarship were obviously hunting the
shadow, not the substance. But those who have a thor-
ough knowledge of both, like men armed at all points,
have the sooner attained their object and carried
authority with them. (Vitruvius, The Ten Books of Ar-
chitecture, translated by Morris Morgan. New York:
Dover Publications, 1960: p. 5) (Coplien, 1995a)

Just as this pattern draws on classic architecture to motivate
software architects to keep their fingers dirty, so the pat-
tern discipline calls on software architects to stay grounded
in the implementation of their designs. Too many software
methods suffer from over-the-wall design transfer, which
almost always assures that the original design is lost.

When we capture design and architecture patterns, it s im-
portant to capture them in a way that day-to-day program-
mers can use them. This is consistent with the pattern
agendas to capture real stuff (Section 7.2) and to preserve
the dignity of programmers (Section 7.5).

7.5. Dignity for Programmers

Because patterns are about real stuff, they speak to the
daily concerns of the programmer. This draws attention to
the unheralded elegance and power of the techniques that
shape the customer-deliverable artifact. Such an emphasis

38 Software Patterns

breaks with the disproportionate respect our discipline has
accorded architecture and formal methods. Most software
cultures honor the lead architect and the methodologist, but
keep those who cast the product in its final form low on the
social ladder. These values seem to mirror the industrial
age and its social structure of factory assembly lines, where
programmers adopt the stature of the assembly line worker.
Far too many cultures view their programmers as little
more than unskilled workers.

In the pattern community, we seek to celebrate the excel-
lence of designers and programmers. Their contributions
shape end products to as large or greater extent than do
those of the architects.

By the same token, we believe that architects need to earn
their keep by keeping in touch with the reality of imple-
mentation. That fits well with patterns as real stuff (Section
7.2); we find this principle extolled in a process pattern
language such as Architect Also Implements (see Section
7.4).

7.6. Aggressive Disregard for Originality

Many new computer science techniques and technolo-
gies distinguish themselves at the expense of their
predecessors. For example, advocates of object-oriented
techniques often extol them by comparing them to pro-
cedural design techniques, illustrating their superiority
for solving well-known problems. Brian Foote uses the
term novelty vulture to describe the behavior expected
of leading engineers.

Anyone who has been in the industry for a long time can
point to cycles of new technology, and can tell you that the
expectations an the rise of a new technique always exceed
what can be delivered later.

We seek to capture long-proven ideas in patterns. This
breaks with the cultural norms of most R&D organiza-

tions that reward innovation, invention, and novelty. In
the pattern community, we hold an aggressive disr e-
gard for originality (more of Brian s phraseology).

This is not to say that novel solutions should be dis-
missed our of hand. Existing patterns can be applied in
novel ways, such as Buschmann s application of
Model-View-Controller at the highest levels of system
architecture (Buschmann & Meunier, 1995). Since to-
day s original ideas will be the patterns of the next dec-
ade, it s important to keep innovative developments
alive.

Patterns help reduce risk on large, new ventures that can
build on the fundamentals of past, successful ventures.
Good design balances patterns (in the main structure of
the solution) with new techniques and methods. For ex-
ample, a telecommunication system architect would be
unwise to ignore the pattern language in Section 2.1.
These patterns shape the overall structure and mecha-
nisms in ways that fundamentally support business
needs, but these patterns might be perfectly compatible
with an object-oriented or rule-based implementation.
Balancing the old patterns with the new is just an ex-
ample of the risk management concerns that have al-
ways been the purview of software project managers.

This raises an important detail: patterns have no ipso
facto relationship to objects. Good patterns exist in the
good practices of many prior disciplines; many of the
patterns in this briefing are of that nature. Such patterns
are rarely incompatible with object-oriented techniques,
but they wouldn t be recognized as object-oriented
techniques per se. Furthermore, patterns work well out-
side the realm of software method itself in such areas as
organization and training; these are hardly object-
oriented disciplines.

At some point, old patterns cease to work and new pat-
terns take their place, but such changes rarely take place
subtly or incrementally; they happen as fundamental
paradigm shifts. Paradigm shifts are hard because peo-

Software Patterns 39

ple have difficulty letting go of the patterns with which
they are comfortable. But paradigm shifts are also rare:
most of the time, nothing happens (Weinberg, 1988),
and tried-and-true principles prevail over invention.

7.7. The Human Element

In an electronic mail exchange, Richard Gabriel summa-
rized our concern for human issues well:

We are trying to bring people and humanity into the
software design and development process. I think
this is the goal because it s the key Alexandrian
idea. If you look an his patterns, each or nearly all
talk about the context and forces in terms of what
people need to do to live fully and to be fully alive.
So far our patterns are not like this (when I get a
spare moment, I will write out and send some very,
very simple patterns I have that focus on people as
the context and forces and which have a technical
thing as their solution). I believe we need to get
clear on this before we subject ourselves to too
much togetherness with the outside world because
this position is probably considered nuts to the theo-
retical community we might deal with. (Gabriel,
1995)

All software serves a human need, at some level. During
design, engaging these human issues provides an important
perspective perhaps the most important perspective on
the relevance of architecture and design activities. We will
see this in Gabriel s pattern Simply Understood Code in the
next section (page 40), which follows from the above cita-
tion. We also saw a strong human element in the telecom-
munications patterns of Section 2.1 on page 18. While the
casual reader might think of these as architectural patterns,
the careful reader will discover that many have little to do
with software structure, focusing instead on human behav-
ior, human needs, and human motivations.

Many traditional, supposedly technical principles carry
deeper human forces. Frank Buschmann and Regine
Meunier (Buschmann & Meunier, 1995) include cohe-
sion and coupling in their pattern classification scheme.
Coupling and cohesion, pioneered by Constantine, are
time-honored principles of software design. The soft-
ware itself doesn t care about its coupling and cohesion;
if anything, the software performance could benefit from
tighter coupling that overcomes some of the inefficien-
cies of abstract interfaces. But we focus on abstraction,
coupling, and cohesion for the sake of the people who
own and maintain the code. People can work independ-
ently to the extent that their code is decoupled from the
code of other teams. Good patterns capture not only the
principles of coupling and cohesion at the code level,
but also the forces and resulting context at the human
level. To fall short in the human area while succeeding
in the technical domain is to have missed the point of a
pattern and of the principles of coupling and cohesion in
their own right.

Aesthetics, taken up in the next section, are an important
aspect of the human element of patterns.

7.8. Aesthetics

Computer science is popularly billed as a science. Acade-
mia teaches testable skills, and managers try to manage ac-
cording to measurable quantities. While it s important to
teach the basics, and while a development project needs a
common discipline, these factors aren t the underpinnings
of software quality.

The aesthetics of the design itself are good indicators of
system maintainability. A system that can t easily be un-
derstood can t easily be evolved. Good design appeals to
the human aspects of development.

Patterns celebrate software as literature. The pattern com-
munity is not the first to do so; Knuth brought us literate

40 Software Patterns

software (Knuth, 1995). Software development is a creative
task. This means that no two people will solve the same
problem exactly the same way, or that an individual will
solve a problem the same way twice.

Aesthetics are important because of the human element.
Aesthetics in code make code easier to understand, and
more maintainable. Consider the following pattern from
Richard Gabriel:

Pattern: Simply Understood Code

at the lowest levels of a program are chunks of
code. These are the places that need to be under-
stood to confidently make changes to a program,
and ultimately understanding a program thor-
oughly requires understanding these chunks.

In many pieces of code the problem of disorienta-
tion is acute. People have no idea what each com-
ponent of the code is for and they experience con-
siderable mental stress as a result.

Suppose you are writing a chunk of code that is
not so complex that it requires extensive docu-
mentation or else it is not central enough that the
bother of writing such documentation is worth the
effort, especially if the code is clear enough on its
own. How should you approach writing this code?

People need to stare at code in order to understand
it well enough to feel secure making changes to it.
Spending time switching from window to window
or scrolling up and down to see all the relevant
portions of a code fragment takes attention away
from understanding the code and gaining confi-
dence to modify it.

People can more readily understand things that
they can read it their natural text reading order; for
Western culture this is generally left to right, top
to bottom.

If code cannot be confidently understood, it will
be accidentally broken.

Therefore, Arrange the important parts of the
code so it fits on one page. Make that code under-
standable to a person reading it from top to bot-
tom. Do not require the code to be repeatedly
scanned in order to understand how data is used
and how control moves about.

This pattern can be achieved by using the follow-
ing patterns: Local Variables Defined and Used on
One Page, which tries to keep local variables on
one page; Assign Variables Once, which tries to
minimize code scanning by having variables
changed just once; Local Variables Reassigned
Above their Uses, which tries to make a variable s
value apparent before its value is used while scan-
ning from top to bottom; Make Loops Apparent,
which helps people understand parts of a program
that are non-linear while retaining the ability to
scan them linearly; and Use Functions for Loops,
which packages complex loop structure involving
several state variables into chunks, each of which
can be easily understood. (Gabriel, 1995)

The humanity of this pattern shines through in the words
confidently, stress, secure, culture, understand, etc. Human
comfort emerges from the aesthetics of the design.

Aesthetics isn t just about code formatting, either. Aes-
thetics might be founded in sound structure, intuitive mod-
ule interfaces, or a holistic concern for the system and its
environment. We find the highest principles of architecture
in the classic Vitruvian triad: utility, firmness, and last but
not least, delight or aesthetics.

There is an even more obvious side to aesthetics: how users
view our programs. An aesthetically pleasing human inter-
face makes life more enjoyable for the users of the pro-
gram: they become less frustrated, more productive, and

Software Patterns 41

perhaps even more entertained than they would otherwise
be.

Consider the following three patterns, abstracted from
Ward Cunningham s CHECKS pattern language. These
patterns ostensibly deal with human interfaces and the
aesthetics of human-computer interaction:

1. Whole Value

When parameterizing or otherwise quantifying a
business (domain) model, there remains an over-
whelming desire to express these parameters [cur-
rency, calendar, periods, telephone numbers] in the
most fundamental units of computation. Not only
is this no longer necessary (it was standard practice
in languages with weak or no abstraction), it actu-
ally interferes with smooth and proper communi-
cation between the parts of your program and be-
tween the program and its users. Because bits,
strings, and numbers can be used to represent al-
most anything, any one in isolation means almost
nothing.

Therefore: Construct specialized values to quantify
your domain model and use these values as the ar-
guments of their messages and as the units of input
and output.

2. Exceptional Value

A business model will normally be composed of a
basic case or abstraction that is specialized and/or
refined to capture the diversity present in the busi-
ness. However, there will often be circumstances
where the inclusion of all business possibilities in
the class hierarchy would be confusing, difficult,
or otherwise inappropriate. You will therefore at
times need to extend the range of an attribute be-
yond that offered by a Whole Value (1). Consider
a pollster who collects answers like agree, strongly
agree, and so on. Answers that defy quantifica-
tion, like illegible or refused, are better repr e-

sented outside the range of values, no matter how
fuzzy they may be. However, the structure of a
domain model should save a place for this sort of
missing data, for it may appear later. In fact,
missing values are impossible to avoid during the
creation (data entry) of all but the most trivial do-
main models.

Therefore: use one or more distinguished values to
represent exceptional circumstances. Exceptional
values should either accept all messages, answer-
ing most of them with another exceptional value,
or reject all messages...

3. Meaningless Behavior

Given that Whole Values (1) used to quantify your
business logic will exhibit subtle variations in be-
havior and that Exceptional Values (2) may appear
throughout the computations, it is possible that the
methods you write will stumble in circumstances
you cannot foresee. Keep in mind that the rules of
business apply only selectively, and that the evo-
lution of your business practices can wiggle around
even those rules that must apply. In your domain
models you are chartered to express business logic
with no more complexity than its original concep-
tion or current expression.

Therefore: Write methods without concern for
possible failure. Expect the input/output widgets
that initiate computation to recover from failure
and continue processing. Output will remain blank,
because any other output would be an attempt to
attach meaning to meaningless behavior. Users
will interpret unexpected blanks to mean that in-
puts do not apply and/or outputs are unavailable...
(Cunningham, 1995)

The user benefits from a clean, intuitive interface. Some
interfaces suffer from code that tries to help the user too
much by popping up error windows every time the appli-
cation trips over a mistake; this pattern avoids that.

42 Software Patterns

Although ostensibly about human interface design, these
patterns benefit the designer as much as the end user.
The pattern says don t worry about error handling:
propagate problems to the end of the evaluation chain
(the human interface) and deal with the problems just
before they reach the user. The patterns tell both how to
propagate the errors and how to catch them at just the
right moment. This relieves programmers of the cogni-
tive burden of error management as they write code and
leaves the code easier to maintain afterward. Lacking
scattered conditionals that check for error conditions, the
code is much more concise and readable than if brute-
force techniques were used.

Most software patterns are about software architecture,
and patterns certainly take their inspiration from the
more ancient field of building architecture. Aesthetics
are key to good architecture. Rybczynski noted that ar-
chitecture is the sum of engineering and culture; we
rarely admit the latter in our design methods. He illus-
trates this principle with a powerful example:

The communication of meaning, more than beauty,
distinguishes architecture from engineering. A bridge
must be solid, functional, and attractive; a good public
library must be all of these, but it also carries cultural
baggage. Its architecture defines our attitude toward
reading and celebrates a sense of civic pride. A library
is more than a warehouse for books; it is a built evoca-
tion of an intellectual ideal. (Rybczynski, 1992: pp.
266 267)

We are here to give our software meaning in the socie-
ties in serves, not just to build the equivalent of nuts and
bolts. Meaningful systems serve their users well. During
the construction of a meaningful system, the system
builder and system user are engaged in a (sometimes
implicit) dialogue where each must understand the pat-
terns of the other. Software authors must understand the
user domain and vocabulary; the software user has to
understand the meaning of mouse movements and key
clicks as the author has mapped them into the user vo-

cabulary. Patterns can capture the subtle aspects of this
dialogue at a high level, aiding this communication be-
tween user and author. Such concerns distinguish merely
functional systems from systems that are pleasant to use.

7.9. Interdisciplinary Scope

The software pattern community took its foundations
from a foreign field: building architecture and urban
planning. Software patterns are broadening into the do-
mains of organization and process, training, and areas
outside the traditional focus of software discipline. But
we aspire to go even further.

There is a traditional and frequently highlighted gap
between the domain of software designers and the do-
mains of their customers. Software designers tradition-
ally know data structures, algorithms, paradigms, and
methods; domain practitioners understand the practices
of their business, craft, or pastime. Software developers
will better be able to meet customer needs by under-
standing their domain needs. Going even further, if we
can capture the important software design patterns that
we have found useful for solutions in a specific domain
like biology, we can give them those patterns as they
start to do their own programming. This is consistent
with the architect who employs the patterns of the pre-
dominant architectures of a culture, so people can par-
ticipate materially in the construction of their own
homes, churches, factories, and parks. Patterns provide a
vocabulary for customer engagement, but we must first
engage our customers in biology, telecommunications,
finances, aerospace, and other disciplines to work with
them to develop this vocabulary.

Customer engagement is a popular agenda in contempo-
rary management circles. We can build on other paral-
lels that are less direct, but perhaps even more powerful,
by looking for parallel design structures that transcend
domains.

Software Patterns 43

As an example, consider the CHECKS pattern language
(see page 41), which applies to the design of software that
works with interactive user interfaces. This pattern is fun-
damentally the same pattern as the IEEE floating point
standard, with obvious parallels between not a number
and exceptional value.

We find parallels for Leaky Bucket Counter (page 26) in
other domains as well. Leaky Bucket Counters do the same
thing in software that low-pass filters do in analogue cir-
cuits and stereo systems. These related patterns sometimes
point to broader patterns that transcend domains; this is a
fundamental organizing principle for pattern systems (Clas-
sifying Patterns on page 23).

The most powerful patterns touch human and technological
concerns at once. Short of attacking two domains with one
pattern, we can carefully weave patterns from multiple do-
mains into a cogent language that integrates human con-
cerns with technology. Steve Berczuk has done this by in-
tegrating his earlier design patterns with organizational and
process patterns (Berczuk, 1996b):

Steve includes social context as a motivating context
for a pattern. He observes that both organizational
problems and technical problems figure heavily in sat-
ellite telemetry software development, largely because
such projects employ geographically distributed devel-
opment teams. These projects lack a single architec-
tural authority, making it difficult to apply the pattern
Architect Controls Product. Because groups are geo-
graphically isolated and have widely divergent inter-
ests, it s important to localize changes to the software
owned by a team (Code Ownership, Organization
Follows Location). The solution is to decouple teams
through flexible architectural interfaces, employing
patterns like Callback, Parser Builder, and Hierarchy
of Factories. The resulting architecture and organiza-
tion help reinforce patterns like Developer Controls
Process and Code Ownership. (Coplien, 1995b)

7.10. Ethics

Software quality is subjective, and software intellectual
property is an ongoing challenge for the legal profes-
sion. The issue has gained notoriety through look-and-
feel suits, through the Free Software Foundation, the
League for Programming Freedom, and other groups.
Comparable techniques, claims, methods and tools defy
objective measures, yet they vary dramatically in quality
and suitability.

This is a market ripe for disaster, a market where un-
proven techniques, methods and tools can gain large
foot-holds. Patterns are particularly subject to the same
abuses, particularly because they are so subjective, and
because they have such allure both to informed design-
ers and to the uninitiated.

For these reasons, Norm Kerth led an ethics session an
the first conference on Pattern Languages of Program-
ming (PLoP) in 1994, so patterns have had a strong ethi-
cal foundation since their earliest years in software. This
section looks at the ethical aspects of the pattern value
system.

7.10.1. Intellectual Currency
Many patterns tackle problems whose solutions are diffi-
cult to measure directly. How does one measure the quality
of a design? In the long run, one can measure how well it
satisfies a customer and how well its structure stands up
under evolution (return on investment, net present value,
etc.). But such measures are trailing indicators, not the stuff
patterns are made of. Patterns capture the insights of ex-
perts with good track records. Although patterns are sup-
ported by a rationale, the decision to use one design tech-
nique over another ultimately comes down to a subjective
evaluation. Yet these intellectual gems are sometimes the
key design insights that enable a product or a technology,
and we should honor those who take the time to codify
these techniques as patterns.

44 Software Patterns

Mary Shaw uses the term intellectual currency to describe a
model for disseminating the literature of technical innova-
tion. Normal currency leaves you poorer if you give it
away. Attributed innovative ideas are worth more to the
originator when given away, that is, fairly, generously, and
accurately acknowledged. Pattern writers and pattern users
are well advised to cite their sources when using or codi-
fying patterns. It encourages our experts to share their se-
crets with us.

7.10.2. Legal Issues
Many people ask how copyrights and patents relate to pat-
terns. Patterns can be copyrighted as can any other piece of
literature. Patterns may describe technical solutions worthy
of patentability independent of their expression in pattern
form.

Patterns are not inventions in themselves; rather, they cod-
ify well-established (although often obscure) practice.
Someone might be identified as the first to think of a pat-
tern; another as the first to use it; another as the first to dis-
cover that it is a recurring pattern; another as the first to
write it down in pattern form; another as the first to publish
it; others as the first publishers of derivative works; etc.
Each of these roles may play a part in intellectual property
rights.

Legal issues are driven largely by precedent and conven-
tion as well as by law, and a legal professional should be
consulted for binding legal advice in the appropriate juris-
dictions.

7.11.3. Fighting Information Hiding
Knowledge is power. Individuals with key technical
knowledge too often look to their expertise as a source of
their own job security and perhaps more deeply as a source
of personal security and identity.

As we gather patterns from industry experts, we must make
them feel secure enough to share their knowledge with oth-

ers: this is the primary motivation for the principle of in-
tellectual currency.

Beyond attribution, we must persuade experts that they can
be even more effective if they share their ideas broadly
than if they are the sole interpreters of their expertise.
Written knowledge can outlast these experts chronologi-
cally and can outpace them geographically.

Last, even patterns can t replace experts. We capture pat-
terns from the experts to help work-a-day engineers am-
plify what they already know, and to draw out the skills
within them. A true expert uses patterns unconsciously, as
they have become part of the fabric of the expert s mental
processes. Alexander calls this passing through the gate
(Alexander, 1979: pp. 546 549). Patterns capture edges of
the intuitive problem-solving strategies of true experts;
much of the power lies an a deeper level, accessible only to
experts reaching within themselves to draw on bits inacces-
sible to the rest of us. Patterns can help the work-a-day en-
gineer avoid inexpert errors, but they won t transform
every carpenter into a Frank Lloyd Wright or every soft-
ware engineer into a Donald Edmund Knuth. We still de-
pend desperately on the cultivated expertise of domain ex-
perts.

7.10.4. Don’t Hype
Hype was an important topic of discussion an Norm
Kerth s ethics session. Hype has two sources: enthusiasm
that stems from well-informed advocates of patterns and in-
flated expectations from practitioners outside the pattern
community, whether well-intentioned or not. Hype often
propels expectations beyond what patterns can deliver.

By making hype unfashionable in the pattern community,
we hope to minimize both sources of hype, and to increase
the chances that expectations will match what patterns can
deliver. It s inevitable that opportunists will raise expecta-
tions about patterns to sell their wares, and in fact, this
problem may be beyond the influence of the pattern com-
munity.

Software Patterns 45

There is another twist on the hype issue: undue attention to
reducing hype is a form of hype in itself.

7.10.5. Aggressive Disregard for Originality
Unproven software ideas gain ground too easily. In the
long term, some ideas gain a reputation as being unwork-
able or inferior, which causes a credibility gap for the
original proponent. It seems like many software ideals fall
into this trap. We seek to avoid this trap in patterns by
building on proven ideas, rather than by pioneering new
ideas.

This value is explored further in Section 7.6.

8. History

Interest in software patterns emerged from the leading
software designers in the industry. Because objects have
been the focus of leading software design and practice
since the mid 1980s, it was natural for patterns to emerge
from object-oriented design. The link between patterns and
objects persists to this day, although there is nothing intrin-
sic about the relationship.

Some of the earliest work with patterns was done by Ward
Cunningham and Kent Beck, who were then at Tektronix.
Kent had encountered patterns in his early academic days;
he writes:

I first discovered patterns as an undergraduate at the Uni-
versity of Oregon. Many of the students in my freshman
dorm ... were in the School of Architecture. Since I had
been drawing goofy house plans since I was six or seven,
they pointed me in the direction of Christopher Alexander.
I read all of The Timeless Way of Building standing up in
the university bookstore over the course of several months.

I had been working at Tektronix for a year and a half when
I came across Alexander again. I found a battered old copy
of Notes on the Synthesis of Form in Powell s. Alexander s

excoriation of methodologists in the introduction to the
second edition resonated with my biases, leading me to
Timeless Way again. It seemed everything he didn t like
about architects, I didn t like about software engineers. I
convinced Ward Cunningham that we were onto something
big. (Portland pattern repository, http://c2.com/ppr)

In 1987, Ward Cunningham and Kent Beck were consult-
ing with a group that was having trouble designing a user
interface They decided, in Ward s VW Vanagon on the
way over, to try out the pattern stuff they d been studying.
Alexander said the occupiers of a building should design it,
so they had the users of the system design the interface.
Ward came up with a five-pattern language that helped
them take advantage of Smalltalk s strengths and avoid its
weaknesses. The patterns were originally presented ver-
bally. Here are those patterns, extracted from the Wiki-
WikiWeb web site
(http://c2.com/cgi/wiki?WindowPerTask):

Window Per Task:

Make a specific window for each task the user must
perform. All of the information needed to complete a
task should be available in the Few Panes of the win-
dow. Assume prerequisite tasks have been completed
(if they haven t the user will simply change windows).

This pattern effectively side-steps gross problems that
Model-View-Controller had with mutually dependent
window at the time of the Tek LT1000 project.

The LT1000 domain engineers knew exactly what
tasks their users performed. There were only five or
six.

Few Panes:

To understand complex things one often must see it
from several points of view. Therefore: Provide these
points of view (called simply View) by dividing the
area of your Window Per Task into panes.

Standard Panes:

46 Software Patterns

One must learn to operate each kind of pane offered in
the Few Panes of every window.

Therefore: Cast each pane into the format offered by
one of a few standard panes. For Test Programming,
these should be limited to:

• Text
• List
• Table
• Waveform

Nouns And Verbs:

Things exist while action happens.

Therefore: Put lists of things (nouns) in a list pane
(one of Few Panes) which persists through interac-
tions. Put actions (verbs) in Short Menus which pop up
and then disappear as the action commences.

The one time our domain specialists had trouble satis-
fying this pattern was for a menu they thought should
include:

• Decimal
• Octal
• Hex

We recognized that they were in fact thinking of the
menu options as actions and suggested that they re-
name them:

• Be Decimal
• Be Octal
• Be Hex

Short Menus:

The elements of a pop-up menu must be visually
searched repeatedly.

Therefore Make them short, fixed and single-level.

It s interesting that this pattern was easily met because
of the conditions set up by Window Per Task and
Nouns and Verbs. [From the WikiWikiWeb,
http://c2.com/cgi/wiki]

They were amazed at the (admittedly spartan) elegance of
the interface their users designed. They reported the results
of this experiment at OOPSLA 87 in Orlando. Ward wrote
a panel position (Cunningham, 1988), and both Kent and
Ward presented at Norm Kerth s workshop Where do o b-
jects come from? (Beck, 1988). They talked patterns until
they were blue in the face, but without more concrete pat-
terns, nobody was signing up.

Meanwhile Erich Gamma was busy writing and reflecting
about object-oriented design in ET++ as part of his Ph.D.
thesis. ET++ had already established itself as an exemplary
framework in the C++ community. Erich had realized the
importance of the recurring design structures, or patterns,
of this framework. The question really was: how do you
capture and communicate them?

In 1990 at ECOOP/OOPSLA in Ottawa, Bruce Anderson
ran a birds-of-a-feather session called Toward an Archi-
tecture Handbook where he, Erich Gamma, Richard Helm,
and others got into discussions about patterns.

Just prior to ECOOP 91 Erich Gamma and Richard Helm,
sitting on a rooftop in Zurich on a sweltering summer s
day, put together the very humble beginnings of the catalog
of patterns that would eventually become Design Patterns.
There they identified many patterns including such familiar
and unfamiliar patterns as:

1. Composite

2. Decider

3. Observer

4. Constrainer

Many of these patterns made ii into Design Patterns
(Gamma et al., 1995); many others remain rough and un-
published to this day.

Things really got rolling at the OOPSLA workshop that
Anderson ran in 1991. Coincidentally, Erich Gamma,

Software Patterns 47

Richard Helm, Ralph Johnson, and John Vlissides were
all there; they would later become the Gang of Four
that wrote Design Patterns. Most of the Hillsiders-to-be
were there: Ward and Kent, Desmond D Souza, Norm
Kerth, and other pattern notables like Doug Lea and
Wolfgang Pree. Bruce repeated the workshop in 1992,
which is where the Gang of Four properly got together.
Frank Buschmann s first publication on patterns was
presented there as well.

In late 1988, the writer started cataloging language-
specific C++ patterns he called idioms, which are the
lowest-level patterns. Early manuscripts of this work
were used to teach objects and C++ an AT&T in early
1989. Addison-Wesley published the book in Septem-
ber 1991 as Advanced C++ Programming Styles and
Idioms. Peter Coad had been exploring patterns in par-
allel as well. He mentioned them in a 1991 issue of his
newsletter, and published an article in Communications
of the ACM in 1992 (Coad, 1992).

By this time, pattern folks started discovering their
mutual interest and sought opportunities to take their
ideas a step further. In May of 1993, some folks got to-
gether for a workshop on object-oriented design an
IBM in Thornwood, New York. Reflective thinking
was a big part of this workshop, both for the standard
curriculum and for the extracurricular pattern discus-
sions after hours. Desmond D Souza, Doug Lea, Kent
Beck, Ralph Johnson, Bruce Anderson, Ron Casselman,
and John Vlissides were the facilitators.

In August that same year, Kent and Grady Booch spon-
sored a mountain retreat in Colorado where a group of
us converged on foundations for software patterns.
Ward Cunningham. Ralph Johnson, Ken Auer, Hal Hil-
debrand, Grady Booch, Kent Beck and the writer strug-
gled with Alexander s ideas and our own experiences to
forge a marriage of objects and patterns. We agreed that
we were ready to build on Erich Gamma s foundation
work studying object-oriented patterns to use patterns
in a generative way in the sense that Christopher Alex-

ander uses patterns for urban planning and building ar-
chitecture. We then used the term generative to mean
creational to distinguish them from Gamma pa t-
terns that captured o bservations.

To better understand Alexander s patterns, the group
conducted an exercise on a hillside to design a building
called the Center for Object-Oriented Programming.
Our vision was to design a building where software
practitioners could come together with their clients to
learn each others worlds better, using patterns as the
basis for the dialogue. The group designed a building as
Alexander suggests it should be done: laying out the
building on the actual construction site, taking advan-
tage of the landscape, blending the building with its sur-
roundings. It was an enlightening shared experience.
This group would continue to meet, hone their under-
standing of patterns, and carry patterns forward into the
industry. We started informally referring to ourselves as
The Hillside Group.

Bruce again held his workshop an OOPSLA 93, this
time with patterns in the workshop title and promi-
nently on the agenda.

The Hillside Group men again in early April 1994 to
plan the first Pattern Languages of Programming
(PLoP) conference. We wanted something really wacky
and unusual, but most of us felt (and were willing to
take) the risk that goes with new things. That was Rich-
ard Gabriel s first time with us. He exhorted us all to go
into PLoP with confidence and act as though we knew
what we were doing.

On August 4, about 80 people came together at the Al-
lerton Park estate near Monticello, Illinois, to do just
that. Things went well the weather even cooperated.
Ward Cunningham and Ralph Johnson were program
and conference chair, respectively. Kent Beck, who had
just welcomed a new addition to his family, couldn t
make it, reminiscent of OOPSLA in New Orleans in
1989. The PLoP proceedings came out in May, 1995, as

48 Software Patterns

Pattern Languages of Program Design. (Coplien &
Schmidt, 1995)

In the meantime, the Gang of Four had wrapped up
their work and sent in to the publisher. The first major
compendium of patterns between two covers, Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware (Gamma et al., 1995) made it out in time for
OOPSLA 94. It sold 750 copies an the conference,
more than seven times the highest number of any tech-
nical book Addison-Wesley had ever sold an a confer-
ence. The book is still reported to be doing well.

References

Adams, M., J. Coplien, R. Gamoke, R. Hanmer, F. Keeve,
and K. Nicodemus. (1996). Fault-Tolerant Tele-
communication Patterns. Pattern Languages of
Program Design 2, Reading, MA: Addison
Wesley.

Alexander, C. (1974). Notes on the Synthesis of Form.
Cambridge, MA: Harvard University Press.

Alexander, C. et al. (1977). A Pattern Language. New
York: Oxford University Press.

Alexander, C. (1979). The Timeless Way of Building. New
York: Oxford University Press.

Anthony, D. L. G. Patterns in Classroom Education. Pat-
tern Languages of Program Design 2, Reading,
MA: Addison Wesley.

Beck, K.. R Crocker, J. Coplien, L. Dominick, G.
Meszaros, E Paulisch, and J. Vlissides. (1996). In-
dustrial Experience with Design Patterns. Pro-
ceedings of ICSE 96.

Beck, K. (1988). Using a pattern language for program-
ming. In Workshop on Specification and Design,
organized by Norman Kerth, A CM SIGPLAN
Notices 23,5 (Addendum to the Proceedings of
OOPSLA 87).

Berczuk, S. (1996). Book Review: Object Models: Strate-
gies, Patterns and Applications. Object-Oriented
systems 43).

Berczuk, 5. (1996). Organizational Multiplexing: Patterns
for Processing Satellite Telemetry with Distrib-
uted Teams. Pattern Languages of Program De-
sign 2, Reading, MA: Addison Wesley.

Booch, G. (1994). Object-Oriented Analysis and Design
with Applications. Redwood City, CA: Benjamin
Cummings, 2nd ed.

Buschmann, F. and R. Meunier. (1995). A System of Pat-
terns, Pattern Languages of Program Design,
Reading, MA: Addison Wesley.

Coad, P., D. North, and M. Mayfield. (1995). Object Mod-
els: Strategies, Patterns and Applications.
Englewood Cliffs, NJ: Prentice Hall.

Coad, P. (1992). Object-oriented patterns. Communications
of the ACM35(9).

Coplien, J. 0. (1992). Advanced C++ Programming Styles
and Idioms. Reading, MA: Addison-Wesley.

Coplien, J. 0. (1995). A Development Process Generative
Pattern Language. Pattern Languages of Program
Design, Reading, MA: Addison Wesley.

Coplien, J. 0. (1996). The Human Side of Patterns. C++
Report, January, 81 86.

Software Patterns 49

Cunningham, W (1988). Panel on Design Methodology.
ACM SIGPLAN Notices 23(5) (Addendum to the
Proceedings of OOPSLX87).

Cunningham, W. (1995). The CHECKS Pattern Language
of Information Integrity. Pattern Languages of
Program Design, Reading, MA: Addison Wesley.

DeBruler, D. L. (1995). A Generative Pattern Language for
Distributed Processing. Pattern Languages of Pro-
gram Design, Reading, MA: Addison Wesley.

Edwards, S. H. (1992). Streams: A Pattern for Pull-
Driven Processing. Pattern Languages of Pr o-
gram Design, Reading, MA: Addison Wesley.

Gabriel, R. P. (1996). Patterns of Software: Tales from the
Software Community New York: Oxford Univer-
sity Press.

Gamma, B., R. Helm, R. Johnson, and J. Vlissides. (1995).
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-
Wesley.

Jacobson, I., M. Chisterson, P. Jonsson, and G. Overgaard,
(1992). Object-Oriented Software Engineer-
ing A Use Case Driven Approach. Wokingham,
England: Addison-Wesley.

Kerth, N. (1995). Caterpillar s Fate. Pattern Languages of
Program Design, Reading, MA: Addison Wesley.

Knuth, D. B. (1991). Literate Programming. Stanford, CA:
Center for the Study of Language and Informa-
tion.

Koenig, A. R. (1995). Patterns and Antipatterns. Journal of
Object-Oriented Programming 8(1).

Meszaros, G. (1996). A Pattern Language for Improving
Capacity of Real-time Systems. Pattern Languages

of Program Design 2, Reading, MA: Addison
Wesley.

Morgan, M., translator. (1960). Vitruvius: The Ten Books
of Architecture. New York: Dover.

Parnas, D. L. (1976). On the Design and Development of
Program Families. IEEE Transactions on Software
Engineering, SE-2:1 9.

Pree, W (1995). Design Patterns for Object-Oriented Soft-
ware Development. Wokingham, England:
Addison-Wesley.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W
Lorenson. (1991). Object-Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, NJ.

Rybczynski, W (1989). The Most Beautiful House in the
World. New York: Viking.

Rybczynski, W (1992). Looking Around. New York: Vi-
king.

Seng , P. (1990). The Fifth Discipline: The Art and Pra c-
tice of the Learning Organization. New York:
Doubleday.

Viljamaa, P. (1995). The Patterns Business: Impressions
from PLoP-94. ACM Software Engineering Notes
20(1).

Vlissides, J., N. Kerth and J. Coplien, Eds. (1996). Pattern
Languages of Program Design 2. Reading, MA:
Addison-Wesley.

Volk, T (1995). Metapatterns across Space, Time and Mind
New York: Columbia University Press.

Wolf, K. and C. Liu. (1995). New Clients with Old Serv-
ers: A Pattern Language for Client/Server Frame-

50 Software Patterns

works. Pattern Languages of Program Design,
Reading, MA: Addison Wesley.

Weinberg, G. M., and D. (1988). Weinberg. General Prin-
ciples of System Design. New York: Dorset.

Zimmer, W. (1995). Relationships Between Design Pat-
terns. Pattern Languages of Program Design,
Reading, MA: Addison Wesley.

Software Patterns 51

Index

A

abstraction

and complexity 16
contrasted with “vague” 35

hierarchical 23
levels 23

premature 1
Académie Royale d’Archinecture 37

Adams, Sam 27

adaptation 36

Advanced C+ + Programming Styles and Idioms 47

aesthetics 9, 30, 34, 39—40, 42

aggressive disregard for originality 38, 45

Alberti, Leon Battista (1404-1472) 11, 22,37

Alberti’s Law 11, 22

Alexander, Christopher 2—5, 8—9

Alexanderian form 3, 8,12

and Coplien form 14
Alexanderian scaling 26

aliases 7

Also Known As (pattern section) 13

Ambassador 7

analogy 7—8

Alexanderian 2
Anderson, Bruce 46—47

Anthony, Dana 22

antipatterns 27—28

and forces 28
applicability (pattern section) 13

applying patterns 32

Architect Also Implements 38

Architect Controls Product 43

architecture 4

building 9,11,17,21,34
contrasted with painting 11

folk 11
genres 17

handbook 46

intellectual assets 30
interfaces 30

modern 9,11,22
participative 36

relationship between parts 30

software 42
vision 36

Architecture Handbook 46

artificial intelligence 4

Assign Variables Once 40

AT&T 18, 22, 29, 47

attribution 44

Auer, Ken 47

B

balancing forces 9

Beck, Kent 1, 8, 32, 35—36, 45—47

Berczuk, Stephen 1, 29, 43

Bernese Oberland farmhouses 17

biology 42

blueprints 11

Booch, Grady 47

Borland 22

Bramante, Donano d’Agnolo (1444-1514) 37

52 Software Patterns

Bridge 3, 8, 13, 15—16, 24

Brunelleschi, Filippo (1377-1446) 37

building architecture 17, 21

Buschmann, Frank 1, 25, 38—39, 47

business assets 31

business needs 21, 38

C

C++ 5,13,15—16,46—47

CACM 47

Callback 43

Capacity Bottleneck 8

capacity bottlenecks 10

Cape Cod Houses 17

Cartesian philosophy 23

CASE 3,30

Casselman, Ron 47

castle towers 5

Caterpillar’s Fate 7, 34

catharsis 10

cause and effect 32

Center for Object-Oriented Programming 47

centeredness 9

centralized control

and Mediator 6
CHECKS 14,17,26,34,41,43

and generativity 34

Chicken & Egg 8

Chisholm, Paul S. R. 22

churches, people constructing their own 42

c1assifying patterns 23

client/server 21, 25, 27

CLOS 31

Coad, Peter 13, 28, 47

Code Ownership 43

code, metaphor for geometry of patterns 35

cognitive load 42

cohesion 30, 39

collaborations (pattern section) 13

Colorado 47

comfort, as a force in a pattern 9

commonality and variability 17

communication 3, 7

Compensate Success 28

complexity 16

Composite

history 46
computer science 39

confidence rating of a pattern 12

connections between patterns 12

consequences (pattern section) 13

Constantine, Larry 39

Constrainer

history 46
constraints 36

context 19,30

and pattern languages 8

evolution 9

pattern section 8
social 43

Coplien form 8, 14

Coplien, James 0. 16, 22—23, 26, 28, 47

corporate intellectual assets 30

cost 29

Counted Body Idiom 15—16, 23—24, 29

counter-example 13

Software Patterns 53

coupling 39

in Mediator 6
culture 11

and architecture 11, 42

and engineering 42
and names 7

pattern 1—2, 30, 34—35
Smalltalk 25

Western 40
Cunningham, Ward 1, 3, 13, 36, 41, 45—47

customer engagement 42

customer satisfaction 29

D

D’Souza, Desmond 47

data abstraction 1

DeBruler, Dennis L. 8

Decider

history 46

delight 40

derivative work 44

Descartes, Rene 23

design catalogue 5

design method 3, 30

design patterns 11—12, 21, 23—25, 30, 46—48

contrasted with idioms 24

Design Patterns—Elements of Reusable Object-Oriented
Software 12,48

design, urban 21

designer, source of excellence 38

Detached Counted Handle/Body Idiom 11—12, 15—16,

Developing In Pairs 8

development interval reduction 29

diagrams

patterns as 10
dignity of programmers 37

discovery 29

discovery interval 29

documentation 1, 21—22

design 5
pattern as 3

write-only 22
domain 42

experience with 16
of patterns 21

tutorial 32

vocabulary of 9
dress pattern 3

Dykstra, W. Edsgar 35

E

Ecole des Beaux-Arts 37

Edwards, Stephen H 24

Egalitarian Compensation 28

Entrance Transition 5, 26

environment 35

4ESSTM Switch 19

ET++ 46

ethics 43

evolution 38

examples 35

54 Software Patterns

Exceptional Value 7, 41, 43

experience 30

experts 30, 43—44

junior 31

F

factories, people constructing their own 42

factory assembly lines 38

family 17

farmhouses of the Bernese Oberland 17

Few Panes 45—46

firmness 40

Five Minutes of No Escalation Messages 18—19, 21, 26

flower 32

folk architecture 11

folklore 7

Fool Me Once 7—8, 20—21, 27

Foote, Brian 38

forces 2, 9—10,14, 30, 36

and antipatterns 28
and pattern writing 30

and resulting context 11
as plot 10

balancing 9

human 9
human concerns 34

in Portland form 14
motivating why a problem is difficult 9

pattern section 9

physical 9
resolved, inner 18

strong and weak 14
formal methods 38

frameworks 4, 23—25

and patterns 24
framework patterns 24

streams 24
Free Software Foundation 43

fully alive 3, 34

fun 31

funkiness 11

G

Gabriel, Richard 1, 31, 35, 39—40, 47

Gamma patterns 47

Gamma, Erich 13, 21, 24, 46—47

Gamoke, Robert 27

Gang of Four (GOF), see GOF 47

gate, passing through 44

Gatekeeper 8

generative pattern 32

Caterpillar’s Fate

and generativity 34
generativity 3, 32—34

and the quality without a name 34

early interpretations 47
of natural language 17

genre

architecture 17

software 21
geometry 35

gestalt, generativity of pattern languages 34

goal of patterns 29

Software Patterns 55

GOF (Gang of Four) Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides 47—48

form 12—13
intent 8

patterns 30, 46
graphical specification, contrasted with sketch 11

Green, Janel 1

H

Half-Object Plus Protocol 7

Handle/Body Idiom 15

Hands in View 33

harvesting patterns 30

Helm, Richard 46

heuristic 4

hierarchy 23

limitations 23, 25
Hierarchy of Factories 43

Hildebrand, Hal 47

The Hillside Group 1,47

history of patterns 45

homes, people constructing their own 42

hot fat 10

hot spots 28

HTML 31,36

human concerns 1, 9, 11, 20, 29—30, 34, 36, 39—40, 42

integrating with technological concerns 43

human interface design 42

hype 1, 43—44

hypermedia 31

hypertext 13,31,36

I

IBM in Thornwood 47

Identify The Nouns 8

idioms 4,23,25,47

contrasted with design patterns 24

IEEE 26

floating point standard 43
Illusion of Understanding 22

Impermanence of all things 35

implementation (pattern section) 13

indexing 8

Alexanderian scaling 26
inexpert errors 30

information hiding (human) 44

innovation 38

intellectual assets 31

intellectual currency 43-44

intellectual property rights 44

intent 8

in GOF form 8
intent (pattern section) 13

interaction diagrams 11, 13

interdisciplinary scope 42

introspection 44

invention 38

and patterns 44
Italian stone houses 17

56 Software Patterns

J

job security 44

Johnson, Ralph 47

junior experts 31

K

Kerth, Norm 1, 43—44, 46—47

knowledge engineering 31

known uses (pattern section) 13

Knuth, D. B 39, 44

Koenig, Andrew R. 23, 28

L

language 17

natural 32

programming 17
language document (of Portland form) 13

Lao Tsu 32

law 44

layering 26

Lea, Doug 47

lead architect 38

Leaky Bucket Counter 7, 18—19, 21, 26-27, 43

legal issues 44

Leonardo da Vinci 37

library (not a warehouse for books) 42

Light on Two Sides of Every Room 5

List (standard pane) 46

literate programming 2

literate software 39

literature

pattern as 3
Liu, Chamond 25, 27

Local Variables Defined and Used on One Page 40

Local Variables Re-assigned Above their Uses 40

look-and-feel suits 43

LT1000 45

M

maintainability 39

Make Loops Apparent 40

Mayfield, Mark 28

meaning (of software, hermeneutical) 42

Meaningless Behavior 41

mechanisms 21, 24

Mediator 6, 13

and reuse 6
memory management 15

Mercenary Analyst 22

Meszaros, Gerard 1, 8, 10

metapatterns 28

method, design 3

methodologists 38, 45

Meunier, Regine 39

Michelango 37

microarchitectures 24

Minimize Human Intervention 8,18—20, 26

Software Patterns 57

mining patterns 30

misfit 9—10

MIT 37

Mix New and Old 23

Model-View-Controller 25, 38

modern architecture 9, 11, 22

modular parts 6

Monticello, Illinois 47

morphology

of pattern languages 18
motivation (pattern section) 13

mud houses 11

N

name (pattern section) 7, 12

natural language 36

Need to Know 22

network (of patterns) 17

North, David 28

not a number 26

and Exceptional Value 43
Notes on the Synthesis of Form 9—10, 45, 48

Nouns and Verbs 46

novel 7

novelty 38

novelty vulture 38

0
object modeling technique (OMT) 13

object protocols 6

object-oriented design 5,21,24,28,38

and GOF form 13

and pattern history 45
orthogonality to patterns 38

object-oriented programming 5

objects I

Observer

history 46
Olson, Don 33

OMT (object modeling technique) 13

OOPSLA 87 in Orlando 46

Organization Follows Location 43

originaliry, aggressive disregard for 38, 45

P

painting

contrasted with architecture 11
paradigm 4, 16

and programming language 17
definition 16

shift 38
parks, people constructing their own 42

Parnas, David 17

Parser Builder 43

participants (pattern section) 13

participative architecture 36

passing through the gate 44

pattern

aliases 7

and culture 11
and experience 30

and frameworks 24

and law 44
and paradigm 16

58 Software Patterns

and people 1, 9, 11,20, 29—30, 34, 36, 39—40,42
and people, integrating 43

and strategies 28
application 30, 32

as diagrams 10

as domain tutorial 32
as literature 30—31,39

as oracle 32
as process 3

as vocabulary 42
classification 23

confidence rating 12

connections 12
culture 1—2, 30, 34—35

definition 2
design 24

domain 21
dress 3

dynamic 3

evolution 38
forms 7, 31

framework 24
generative 3, 32

goal 29
harvesting 30

history 45

idioms 23
indexing (by problem) 8

industrial experience 32
layered schema 23

mining 30—31
organizational 38

process 21

program 30
publication 30—31

related (in GOF form) 13
reviewing 31

telecommunications 17, 21, 26

training 21, 30, 38
urban design 21

value system 2, 34
pattern catalogues 21, 25

contrasted with pattern languages 21

pattern categories 23

pattern classification

based on Alexanderian scaling 26-27

design patterns 24

framework patterns 24
idiom 23

in GOF book 12
pattern connections 12

pattern forms 3, 7

Alexanderian form 8—9

Alexanderian form* 3, 12
Coplien form 8

Coplien form* 14

GOF (Gang of Four) form 12—13
Portland form 8

Portland form* 13
pattern language 2, 13, 17, 21, 25

and context 8
and programming language 17

as literature 1 7
as network of patterns 17

Caterpillar’s Fate 7, 34

CHECKS 14, 17, 26, 34,41, 43
context relationship between patterns 11

contrasted with pattern catalogues 21
defined 17

functionally complete 18
in one’s mind 11

internal organization 27

morphologically complete 18
morphology 18

pattern system 17

Software Patterns 59

telecommunications 18
Pattern Language, A 4,48

Pattern Languages of Program Design 48
pattern network 17

pattern paragraphs (in Portland form) 14

pattern sections 7
applicability 13

collaborations* 13
consequences* 13

context 5
in Coplien form 14

context* 8

examples 35
forces 9

in Coplien form 14
forces* 9

implementation” 13
intent* 8

known uses” 13

minimal 7
motivation 13

name
in Alexanderian form 12

in Coplien form 14
name* 7

participants* 13

problem 5, 7, 9
in Coplien form 14

problem* 8
question* 8

rationale 14, 35
related patterns 13

resulting context 14

resulting context* 11
sample code* 13

sketch* 10
solution 5, 9

in Coplien form 14

solution* 10
structure 13

title 7
pattern system 17

pattern training 30

pattern value system 2

pattern writing 30

patterns

A Place To Wait 8

A Place To Wait* 4
Ambassador 7

and people 9

Architect Also Implements 38
Architect Controls Product 43

Assign Variables Once 40
Bridge 3, 8, 13, 16, 24

Bridge* 15
Callback 43

Capacity Bottleneck 8
Caterpillar’s Fate 34

CHECKS 14,17,26,34,41,43

Chicken & Egg 8

Code Ownership 43

Compensate Success 28

Composite

history 46
Constrainer

history 46
Counted Body Idiom 15, 23—24, 29

Counted Body Idiom* 15
Decider

history 46
Detached Counted Handle/Body Idiom 11—12, 15—

16,23

Developing In Pairs 8

Egalitarian Compensation* 28

60 Software Patterns

Entrance Transition 5, 26
Exceptional Value 7, 41, 43

Exceptional Value* 41
Few Panes 45—46

Few Panes* 45

Five Minutes of No Escalation Messages 19, 21, 26
Five Minutes of No Escalation Messages* 18

Fool Me Once 7—8, 20—21,27
Gatekeeper 8

Half-Object Plus Protocol 7
Handle/Body Idiom 15

Hands in View 33

Hands in View* 33
Hierarchy of Factories 43

Identify the Nouns 8
Illusion of Understanding 22
Leaky Bucket Counter 7, 18—19, 26, 43

Leaky Bucket Counters 19, 21, 26-27

Light on Two Sides of Every Room 5

Local Variables Defined and Used on one Page 40

Local Variables Re-assigned Above their Uses 40

Make Loops Apparent 40
Meaningless Behavior” 41

Mediator 6, 13
Mediator* 6

Mercenary Analyst 22

Minimize Human Intervention 8, 18—20
Minimize Human Intervention* 20

Minimize Human Interventions 26
Mix New and Old 23

Model-View-Controller 25, 38
Need to Know* 22

Nouns and Verbs 46

Nouns and Verbs* 46
Observer

history 46
Organization Follows Location 43

Parser Builder 43
People Know Best 19, 21

People Know Best* 19
Reception Welcomes You 8

Remote Proxy 7

Review the Architecture 22
Riding Over Event Transients 7
Riding Over Transients 7, 18—19, 26-27

Row Houses 5

Short Menus 46
Short Menus* 46

Simplified Mutual Prerequisites 22
Simply Understood Code 12, 39—40

Standard Panes* 45
Streams 24

Try All Hardware Combos 20

Use Functions for Loops 40
Varied Ceiling Heights 5

Whole Value 41
Whole Value* 41

Window Per Task 7,45—46

Window Per Task* 45
People Know Best 19, 21

physics 10

picture 12

A Place To Wait 4, 8

plan 3

Plato 23

play 10

PLoP 43,47

plot (play)

compared with forces 10
poetry 31

Poincare, Jules Henri (1854-1912) 10

Portland form 8, 13

language document 13

Software Patterns 61

pattern paragraphs 14
summary screen 14

Portland Pattern Repository 13—14

Portland, Oregon 13

postulates 35

Powell’s Book Store 45

Pree, Wolfgang 28, 47

principles 3-4, 30, 34

organizing (paradigm) 16

system-level organizing 24
problem 30

pattern section 8—9
process patterns 21

productivity 29

programmer 38

programming language

language independence 24
programming, literate 2

publication 31

of patterns 31

Q

quality without a name 32, 34

and generativity 34

slightly bitter quality 35
Quattro Pro for Windows® 22

question (pattern section) 8

R

rationale 14, 35

real stuff 1, 35, 37—38

Reception Welcomes You 8

recipe 3

reference counting 5,15—16,24

reflective thinking 47

related patterns (pattern section) 13

Remote Proxy 7

resulting context 30

and forces 1 1
human concerns 34

pattern section 11
reuse 5

Review the Architecture 22

rework 29

Riding Over Event Transients 7

Riding Over Transients 7, 18—19, 26-27

risk 38

Rohnert, Hans 1

role (class) 4

role-model 4

rough drawings 11

Row Houses 5

rule 32

of thumb 3
pattern as 3

three-part 2—3
rule-based paradigm 38

Rybczynski, Witold 11,22,37,42

S

sample code 13

Santa Claus and Easter Bunny approach to teaching 23

62 Software Patterns

scaling

umbrella patterns 27
scenario 13

science, computer 39

Sengé, Peter 32—33

SGML 36

Shaw, Mary 44

Short Menus 46

short story 7

Simplified Mutual Prerequisites 22

Simply Understood Code 12, 39—40

sketch 11—12

and structure 11

in Coplien form 14
pattern section 10

Smalltalk 13, 15—16, 25

social context 43

sociologists 1 0

software architecture 42

software family 17

software genre 21

solution 14, 30

as heart of the pattern 12
partial 10

pattern section 9—10
specific and concrete 35

solution to a problem in a context 7

sonnet 7

specification

graphical, contrasted with sketch 11

software 11
Standard Panes 45

stone houses (southern Italian) 17

strategies

and patterns 28

streams framework 24

String class, as abstraction 35

Stroustrup, Bjarne 1, 5, 23

structure (pattern section) 13

structured programming 1

subclassing

and Mediator 6
summary screen (in Portland form) 14

Switzerland 37

system concerns 21

T

Table (standard pane) 46

technical writer 22

Tektronix 45

telecommunications patterns 18, 21, 26

telemetry 43

testable skills 39

Text (standard pane) 46

theatre 10

theories 35

Thornwood 47

three-part rule 2

Timeless Way of Budding, The 11, 45

title (pattern) 7

Toward an Architecture Handbook 46

training 30

training pattern 21

transient errors 27

Software Patterns 63

Try All Hardware Combos 20

U

umbrella patterns 27

University of Oregon 45

unskilled worker 38

urban design 21

Use Functions for Loops 40

utility 40

V

value system, pattern 2, 34

Vanagon 45

variability 17

Varied Ceiling Heights 5

Viljamaa, Panu 4

Vitruvius (Marcus Vitruvius Pollio) 37, 40

Vlissides, John 47

Volk, Tyler 28

vulture, novelty 38

W

Waveform (standard pane) 46

way of non-action 32

Weinberg’s Law ofTwins 39

Whole Value 41

WikiWikiWeb 45

Window Per Task

Wolf, Kirk 25, 27

World-Wide Web 3]

Wright, Frank Lloyd (1869-1959) 44

writer’s workshops 31

Z

Zen 32

Zuerich, Switzerland 46

